Research Article
BibTex RIS Cite

Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi

Year 2022, Volume: 23 Issue: 1, 64 - 68, 29.03.2022
https://doi.org/10.18182/tjf.1048810

Abstract

Çimentolu odun kompozitleri, çimentonun iyi niteliklerini ve ahşabın yüksek avantajlarını birleştirerek rutubet ve yangın direnci yüksek, işlenebilmesi kolay, mantar ve termitlere karşı yüksek mukavemet özellikleri göstermesi nedeniyle, lignoselülozik katkılı levhalar içerisinde yüksek dayanımlı malzemeler arasında önemli yapmaktadır.
Yapılan çalışmada, kızılçam (Pinus brutia Ten.) odunu kereste atıkları çimento miktarına göre %20 oranında kullanılarak ve katkı maddesi olarak %2.5, %5 ve %10 oranında aktif odun karbon eklenerek kompozit levhalar üretilmiş ve farklı oranlardaki aktif karbonun levha özellikleri üzerine etkisi araştırılmıştır. Çimentolu odun kompozit levhalarının rutubet; tam kuru yoğunluk (g/cm3), hava kuru yoğunluk (g/cm3), su alma, kalınlık artımı, eğilme direnci (N/mm2), elastikiyet modülü(N/mm2) ve ısı iletim katsayısı değerleri belirlenmiştir. Üretilen levhalar içerisine eklenen aktif karbon miktarı arttıkça, rutubet, su alma ve kalınlık artımı miktarının arttığı, tam kuru yoğunluk ve hava kuru yoğunluk miktarının azaldığı tespit edilmiştir. Mekanik özelliklerden çivi tutma direnci üzerine herhangi bir etkisi görülmezken, vida tutma direnci, eğilme direnci ve elastikiyet modülü değerlerini arttırmıştır. Ayrıca katkı maddesinin ısı iletim katsayısı değerini düşürdüğü tespit edilmiştir.

Supporting Institution

Kahramanmaraş Sütçü İmam Üniversitesi BAP birimi

Project Number

2021/6-13 YLS numaralı proje

Thanks

Bu çalışma KSÜ BAP tarafından, 2021/6-13 YLS numaralı proje ile desteklenmiştir. Bu desteğinden dolayı KSÜ BAP birimine teşekkür ediyoruz.

References

  • Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., Cheul Shin, U., 2007. Development of coconut coir-based lightweight cement board. Construction And Building Materials, 21(2): 277–288.
  • ASTM C1113-09, 2004. Standard test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). ASTM, USA.
  • ASTM D1037, 2006. Standard test method for evaluating properties of wood-based fibers and particle panel materials. ASTM, USA.
  • Basri, H.B., Mannan, M.A., Zain, M.F.M., 1999. Concrete using waste oil palm shells as aggregate. Cement and Concrete Research, 29: 619–22.
  • Christy, C.F., Tensing, D., 2010. Effect of class-f fly ash as partial replacement with cement and fine aggregate in mortar. Indian Journal of Engineering and Materials Sciences, 17: 140-144.
  • DIN 1164-11, 2003. Special cement - Part 11: Composition, specification and conformity evaluation for cement with short setting time.German Institute for standards, Germany.
  • Dinwoodie, J. M. and Paxton B. H., 1991. The long -term performance of cement-bonded wood particleboard. In proc. Inorganic bonded wood and fibre composite materials conference. For. Prod. Res. Soc. Madison W/S. pp. 45-54.
  • Goodell, B., Daniel, G., Liu, J., Mott, L., Frank, R., 1997. Decay resistance and microscopic analysis of wood-cement composites. Forest Products Journal, 47(11-12): 75-80.
  • Gunduz, L., Kalkan, S.O., Isker, M., 2018. Effects of using cement-bonded particle boards with a composite component in terms of acoustic performance in outdoor noise barriers. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 4 : 246-255.
  • Justo-Reinoso, I., Srubar, W.V., Caicedo-Ramirez, A., Hernandez, M.T., 2018. Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortars. Construction and Building Materials, 164: 750–759.
  • Karade, S.R., 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24: 1323–1330.
  • Kasai, Y., Kawamura, M., Zhou, J.D., 1998. Study on wood chip concrete with used timber. Recent Advances in Concrete Technology, 7-11 June,Tokushima, Japan, 179: 905–928.
  • Ledhem, A., Dheilly, R.M., Benmalek, M.L., Queneudec, M., 2000. Properties of wood-based composites formulated with aggregate industry waste. Construction And Building Materials, 14: 341-350.
  • Magin, G., 2001. An Introduction to Wood Waste in the UK. Fauna & Flora International, Cambridge, UK
  • Mahoutian, M., Lubell, A.S., Bindiganavile, V.S., 2015. Effect of powdered activated carbon on the air void characteristics of concrete containing fly ash. Construction and Building Materials, 80: 84–91.
  • Meneéis, C.H.S., Castro, V.G., Ve Souza, M.R., 2007. Production and properties of amedium density wood-cement boards produced with oriented strands and silica füme. Maderas: Ciencia Y Tecnología, 9(2): 105-116.
  • Moslemi, A.A., Pfister, S.C., 1987. The influence of cement/wood ratio and cement type on bending strength and dimensional stability of wood-cement composite panels. Wood and fiber science, 19(2): 165-175.
  • Na, S., Lee, S., Youn, S., 2021. Experiment on activated carbon manufactured from waste coffee grounds on the compressive strength of cement mortars. Symmetry, 13(4): 619.
  • Ohijeagbon, I.O., Bello-Ochende, M.U., Adeleke, A.A., Ikubanni, P.P., Samuel, A.A., Lasode, O.A., Atoyebi, O.D., 2021. Physico-mechanical properties of cement bonded ceiling board developed from teak and african locust bean tree wood residue. Materials Today: Proceedings, 44: 2865-2873.
  • Ramirez-Coretti, A., Eckelman, C.A. Wolfe, R.W., 1998. Inorganic-bonded composite wood panel systems for low cost housing: A central american perspective. Forest Products Journal, 48(4): 62-68. Semple, K. E., & Evans, P. D. 2004. Wood-cement Composites-Suitability of Western Australian Mallee Eucalypt, Blue Gum and Melaleucas: A Report for the RIRDC/Land & Water Australia/FWPRDC/MDBC Joint Venture Agroforestry Program. RIRDC.
  • Subaşı, S., İşbilir, B., Ercan, İ., 2011. Uçucu kül ikameli çimento numunelerinin mekanik özelliklerine yüksek sıcaklığın etkisi. Politeknik Dergisi, 14(2): 141-148.
  • TS EN 310, 1999. Ahşap esaslı levhalar – eğilme dayanımı ve eğilme elastikiyet modülünün tayini. TSE, Ankara.
  • TS EN 317, 1999. Yonga levhalar ve lif levhalar – su içerisine daldırma işleminden sonra kalınlığına şişme tayini. TSE, Ankara.
  • TS EN 323, 1999. Ahşap esaslı levhalar - birim hacim ağırlığının tayini. TSE, Ankara.
  • TS EN 13446, 2005. Ahşap esaslı levhalar - bağlayıcıların geri çıkma kapasitesinin tayini. TSE, Ankara.
  • Van Elten, G. J. 2000. Production, properties and world wide application of various wood-cement products. In Proceedings 34th International Particleboard and Composite Materials Symposium pp. 169-174.
  • Yıldız, N., 2014. Yalıtımda doğal çözüm: Perlit. Madencilik Dergisi, pp. 100-102
  • Zhengtian, L., Moslemi, A.A., 1985. Influence of chemical addivites on the hydration characteristics of wastern larch wood-cement-water mixtures. Forest Products Journal, 35(7-8): 37-43.

Effect of additive added to cemented wood composite material on board properties

Year 2022, Volume: 23 Issue: 1, 64 - 68, 29.03.2022
https://doi.org/10.18182/tjf.1048810

Abstract

Cemented wood composites are among the high strength materials formed by combining the good qualities of cement and the high advantages of wood compared to other traditional materials and it is high moisture and fire resistance, easy to workability, high resistance to fungus and termites.
In the study, composite boards were produced by using 20% of red pine wood timber wastes according to the amount of cement and by adding 2.5%, 5% and 10% active wood carbon as an additive, and the effect of different ratios of activated carbon on the board properties was investigated. The humidity, oven dry density (g/cm3), air dry density (g/cm3), water absorption, thickness swelling, bending strength (N/mm2), modulus of elasticity (N/mm2) and heat transmission coefficient values of the cemented wood composite board were determined. It was determined that as the amount of activated carbon added to the produced boards increased, the amount of moisture, water absorption and thickness swelling increased, and the amount of full dry density and air dry density decreased. While there was no effect on the nail holding resistance from mechanical properties, it increased the screw holding resistance, bending resistance and modulus of elasticity values. In addition, it was determined that the additive decreased the heat transfer coefficient value.

Project Number

2021/6-13 YLS numaralı proje

References

  • Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., Cheul Shin, U., 2007. Development of coconut coir-based lightweight cement board. Construction And Building Materials, 21(2): 277–288.
  • ASTM C1113-09, 2004. Standard test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). ASTM, USA.
  • ASTM D1037, 2006. Standard test method for evaluating properties of wood-based fibers and particle panel materials. ASTM, USA.
  • Basri, H.B., Mannan, M.A., Zain, M.F.M., 1999. Concrete using waste oil palm shells as aggregate. Cement and Concrete Research, 29: 619–22.
  • Christy, C.F., Tensing, D., 2010. Effect of class-f fly ash as partial replacement with cement and fine aggregate in mortar. Indian Journal of Engineering and Materials Sciences, 17: 140-144.
  • DIN 1164-11, 2003. Special cement - Part 11: Composition, specification and conformity evaluation for cement with short setting time.German Institute for standards, Germany.
  • Dinwoodie, J. M. and Paxton B. H., 1991. The long -term performance of cement-bonded wood particleboard. In proc. Inorganic bonded wood and fibre composite materials conference. For. Prod. Res. Soc. Madison W/S. pp. 45-54.
  • Goodell, B., Daniel, G., Liu, J., Mott, L., Frank, R., 1997. Decay resistance and microscopic analysis of wood-cement composites. Forest Products Journal, 47(11-12): 75-80.
  • Gunduz, L., Kalkan, S.O., Isker, M., 2018. Effects of using cement-bonded particle boards with a composite component in terms of acoustic performance in outdoor noise barriers. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 4 : 246-255.
  • Justo-Reinoso, I., Srubar, W.V., Caicedo-Ramirez, A., Hernandez, M.T., 2018. Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortars. Construction and Building Materials, 164: 750–759.
  • Karade, S.R., 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24: 1323–1330.
  • Kasai, Y., Kawamura, M., Zhou, J.D., 1998. Study on wood chip concrete with used timber. Recent Advances in Concrete Technology, 7-11 June,Tokushima, Japan, 179: 905–928.
  • Ledhem, A., Dheilly, R.M., Benmalek, M.L., Queneudec, M., 2000. Properties of wood-based composites formulated with aggregate industry waste. Construction And Building Materials, 14: 341-350.
  • Magin, G., 2001. An Introduction to Wood Waste in the UK. Fauna & Flora International, Cambridge, UK
  • Mahoutian, M., Lubell, A.S., Bindiganavile, V.S., 2015. Effect of powdered activated carbon on the air void characteristics of concrete containing fly ash. Construction and Building Materials, 80: 84–91.
  • Meneéis, C.H.S., Castro, V.G., Ve Souza, M.R., 2007. Production and properties of amedium density wood-cement boards produced with oriented strands and silica füme. Maderas: Ciencia Y Tecnología, 9(2): 105-116.
  • Moslemi, A.A., Pfister, S.C., 1987. The influence of cement/wood ratio and cement type on bending strength and dimensional stability of wood-cement composite panels. Wood and fiber science, 19(2): 165-175.
  • Na, S., Lee, S., Youn, S., 2021. Experiment on activated carbon manufactured from waste coffee grounds on the compressive strength of cement mortars. Symmetry, 13(4): 619.
  • Ohijeagbon, I.O., Bello-Ochende, M.U., Adeleke, A.A., Ikubanni, P.P., Samuel, A.A., Lasode, O.A., Atoyebi, O.D., 2021. Physico-mechanical properties of cement bonded ceiling board developed from teak and african locust bean tree wood residue. Materials Today: Proceedings, 44: 2865-2873.
  • Ramirez-Coretti, A., Eckelman, C.A. Wolfe, R.W., 1998. Inorganic-bonded composite wood panel systems for low cost housing: A central american perspective. Forest Products Journal, 48(4): 62-68. Semple, K. E., & Evans, P. D. 2004. Wood-cement Composites-Suitability of Western Australian Mallee Eucalypt, Blue Gum and Melaleucas: A Report for the RIRDC/Land & Water Australia/FWPRDC/MDBC Joint Venture Agroforestry Program. RIRDC.
  • Subaşı, S., İşbilir, B., Ercan, İ., 2011. Uçucu kül ikameli çimento numunelerinin mekanik özelliklerine yüksek sıcaklığın etkisi. Politeknik Dergisi, 14(2): 141-148.
  • TS EN 310, 1999. Ahşap esaslı levhalar – eğilme dayanımı ve eğilme elastikiyet modülünün tayini. TSE, Ankara.
  • TS EN 317, 1999. Yonga levhalar ve lif levhalar – su içerisine daldırma işleminden sonra kalınlığına şişme tayini. TSE, Ankara.
  • TS EN 323, 1999. Ahşap esaslı levhalar - birim hacim ağırlığının tayini. TSE, Ankara.
  • TS EN 13446, 2005. Ahşap esaslı levhalar - bağlayıcıların geri çıkma kapasitesinin tayini. TSE, Ankara.
  • Van Elten, G. J. 2000. Production, properties and world wide application of various wood-cement products. In Proceedings 34th International Particleboard and Composite Materials Symposium pp. 169-174.
  • Yıldız, N., 2014. Yalıtımda doğal çözüm: Perlit. Madencilik Dergisi, pp. 100-102
  • Zhengtian, L., Moslemi, A.A., 1985. Influence of chemical addivites on the hydration characteristics of wastern larch wood-cement-water mixtures. Forest Products Journal, 35(7-8): 37-43.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Gonca Düzkale Sözbir 0000-0002-0728-841X

İbrahim Bektaş 0000-0002-0617-6926

Müberra Demirbük This is me 0000-0001-5770-7099

Project Number 2021/6-13 YLS numaralı proje
Publication Date March 29, 2022
Acceptance Date February 28, 2022
Published in Issue Year 2022 Volume: 23 Issue: 1

Cite

APA Düzkale Sözbir, G., Bektaş, İ., & Demirbük, M. (2022). Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi. Turkish Journal of Forestry, 23(1), 64-68. https://doi.org/10.18182/tjf.1048810
AMA Düzkale Sözbir G, Bektaş İ, Demirbük M. Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi. Turkish Journal of Forestry. March 2022;23(1):64-68. doi:10.18182/tjf.1048810
Chicago Düzkale Sözbir, Gonca, İbrahim Bektaş, and Müberra Demirbük. “Çimentolu Odun Kompozit Malzemeye Eklenen Katkı Maddesinin Levha özelliklerine Etkisi”. Turkish Journal of Forestry 23, no. 1 (March 2022): 64-68. https://doi.org/10.18182/tjf.1048810.
EndNote Düzkale Sözbir G, Bektaş İ, Demirbük M (March 1, 2022) Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi. Turkish Journal of Forestry 23 1 64–68.
IEEE G. Düzkale Sözbir, İ. Bektaş, and M. Demirbük, “Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi”, Turkish Journal of Forestry, vol. 23, no. 1, pp. 64–68, 2022, doi: 10.18182/tjf.1048810.
ISNAD Düzkale Sözbir, Gonca et al. “Çimentolu Odun Kompozit Malzemeye Eklenen Katkı Maddesinin Levha özelliklerine Etkisi”. Turkish Journal of Forestry 23/1 (March 2022), 64-68. https://doi.org/10.18182/tjf.1048810.
JAMA Düzkale Sözbir G, Bektaş İ, Demirbük M. Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi. Turkish Journal of Forestry. 2022;23:64–68.
MLA Düzkale Sözbir, Gonca et al. “Çimentolu Odun Kompozit Malzemeye Eklenen Katkı Maddesinin Levha özelliklerine Etkisi”. Turkish Journal of Forestry, vol. 23, no. 1, 2022, pp. 64-68, doi:10.18182/tjf.1048810.
Vancouver Düzkale Sözbir G, Bektaş İ, Demirbük M. Çimentolu odun kompozit malzemeye eklenen katkı maddesinin levha özelliklerine etkisi. Turkish Journal of Forestry. 2022;23(1):64-8.