Year 2022,
Volume: 27 Issue: 1, 127 - 133, 20.06.2022
Cansu Öksel
,
Alpay Balkan
,
Oğuz Bilgin
,
Mustafa Mirik
,
İsmet Başer
References
- Acevedo, E., M. Nachit and G. Ortiz-Ferrara 1991. Effects of heat stress on wheat and possible selection tools for use in breeding for tolerance. In D.A Saunders, ed. Wheat for the Nontraditional Warm Areas, p. 401-421. Mexico, D.F.: CIMMYT.
- Adesemoye A.O., M. Obini and E.O. Ugoji 2008. Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian J. Microbiol., 39, 423–426.
- Adesemoye, A., H. Torbert, and J. Kloepper 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921e929.
- Akbar M., N. Aslam, T. Khalil, S. Akhtar, E. M. Siddiqi and M.S. Iqbal 2019. Effects of seed priming with plant growth-promoting rhizobacteria on wheat yield and soil properties under contrasting soils. Journal of Plant Nutrition, 42(17). https://doi.org/10.1080/01904167.2019.1655041.
- Alsaady, M.H.M., H.A. Salim, H.M. Aboud, R.A. Al-ani and A.K. Abdulrazzaq 2020. Impact of PGPR bacteria against crown rot disease on wheat. Science Archives, 1(3), 89-97.
- Aloo, B. N., B. A Makumba and E.R. Mbega 2019. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 219, 26–39.
- Backman, P. A., M. Wilson and J.F. Murphy 1997. Bacteria for biological control of plant diseases. In N. A. Rechcigl, & J. E. Rechcigl (Eds.), Environmentally safe approaches to crop disease control (pp. 95e109). Boca Raton, FL: Lewis Publishers.
- Bashan, Y. and L.E.de-Bashan 2005. Bacteria plant growth-promotion. In: Hillel, D. (Ed.), Encyclopedia of Soils in the Environment. Elsevier, Oxford, pp. 103–115.
- Bashan, Y., L.E. de-Bashan S.R. Prabhu and J.P. Hernandez 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33.
- Battacharyya P.N and D.K. Jha 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol, 28(4):1327-50.
- Beauregard, P. B., Y. Chai, H. Vlamakis, R. Losick and R. Kolter 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. U.S.A. 110, E1621–E1630. doi: 10.1073/pnas.1218984110.
- Berendsen, E. M., R.A. Koning, J. Boekhorst, A. de Jong, O.P. Kuipers and M.H.J. Wells-Bennik, 2016. High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon. Front. Microbiol. 7. DOI: https://doi.org/10.3389/ fmicb.2016.01912.
- Bouaziz, A. and D.R. Hicks 1990. Consumption of wheat seed reserves during germination and early growth as affected by soil water potential. Plant and Soil, 128:161-165.
- Carolis, E.D., B. Posteraro, C. Lass-Flo, A. Vella, A.R. Florio, R. Torelli, C. Girmenia, C. Colozza, A.M. Tortorano, M. Sanguinetti and G. Fadda 2012. Species identification of Aspergillus, Fusariumand Mucoraleswith direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinic Microbiology Infect. 18:475-484.
- Cakmakci, R., F. Dönmez, A. Aydın and F. Sahin 2006.Growth promotion of plants by plant growth-promoting rhizo bacteria under green house and two different field soil conditions. Soil Biol. Biochem. 38:1482–1487.
- Dobbelaere, S., A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, C. Labandera-Gonzalez, J. Caballero-Mellado, J.F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, D. Kadouri, S. Sarig and Y. Okon 2001. Responses of agronomically important crops to inoculation with Azospirillum. Funct. Plant Biol. 28: 871–879.
- Duca, D., J. Lorv, C.L. Patten, D Rose and B.R. Glick 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106: 85–125. doi: 10.1007/s10482-013-0095-y
- Esitken, A., H.E. Yildiz, S. Ercisli, M.F. Donmez, M. Turan and A. Gunes 2010. Effects of plant growth-promoting bacteria (PGPB) on yield, growth, and nutrient contents of organically grown strawberry. Sci.Hortic.124:62–66.
de Freitas, J.R. and J.J. Germida 1992. Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biol. Biochem. 24:1137–1146.
- Garcia L.J.A., A. Probanza, B. Ramos, F.J.G. Manero 2003. Effects of three plant growth-promoting rhizobacteria on the growth of transplants of tomato and pepper in two different sterilized and non-sterilized peats. Arch. Agro. Soil Sci. 49: 119–127.
- Haas, D. and G. Defago 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307–319. doi: 10.1038/nrmicro1129.
- Ibiene A.A., J.U. Agogbua, I.O. Okonko and G.N. Nwachi 2012. Plant growth-promoting rhizobacteria (PGPR) as biofertilizer: effect on growth of Lycopersicum esculentus. J. American Sci. 8(2): 318–324.
- Khan, Md. A, M.M. Rahman, M. Tania, N.F. Shoshee, A. Xu and H. Chen 2013. Antioxidative potential of Duranta repens (LINN.) fruits against H2O2 induced cell death in vitro. Afr J Tradit Complement Altern Med, 10(3):436-441.
- Kilian, M., U. Steiner, B. Krebs, H. Junge, G. Schmiedeknecht and R. Hain 2000. FZB24R Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr. Bayer. 1: 72–93.
- Kloepper J.W. and M.N Schroth 1978. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of IVth International Conference on Plant Pathogenic Bacteria. pp.879–882.
- Kokalis-Burelle N., C.S. Vavrina, M.S. Reddy and J.W. Kloepper 2003. Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: Effects on transplant quality, disease, and nematode resistance. HortTech.13(3):476–482.
- Krey, T., N. Vassilev, C. Baum and B. Erichler-Lobermann 2013. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. European Journal of Soil Biology. 55:124-130.
- Kumar, A., B.R. Maurya and R. Raghuwanshi 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocataly. Agric. Biotechnol. 3:121–128.
- Kumar, A., B.R. Maurya, R. Raghuwanshi, V.S. Meena and M. Tofazzal Islam 2017. Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 36:608–617.
- Lelliott, R.A. and D.E. Stead 1987. Methods for Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford, UK.
- Lucas Garcia, J.A., A. Probanza, B. Ramos, J.J. Colon Flores and F.J. Gutierrez Monero 2014. Effects of Plant Growth Promoting Rhizobacteria (PGPRs) on the Biological Nitrogen Fixation, Nodulation, and Growth of Lupinus albus l. cv. multolupa. Eng. Life Sci. 4(1):71-77.
- Meena, K. K., A.M. Sorty, U.M. Bitla, K. Choudhary, P. Gupta and A. Pareek 2017. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci. 8:172.
- Misra M., U. Kumar, P.K. Misra and V. Prakash 2010. Efficiency of plant growth-promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv. Biol. Res. 4(2): 92–96.
- Nguyen, M.L., J. Glaes, S. Spaepen, B. Bodson, P. Jardin and P. Delaplace 2019. Biostimulant effects of Bacillus strains on wheat from in vitro towards field conditions are modulated by nitrogen supply. J. Plant. Nutr. Soil Sci. 1-10.
- Pavlovic, M., I. Huber, R. Konrad and U. Busch 2013. Application of MALDI-TOF MS for the Identification of Food-Borne Bacteria. The Open Microbiology Journal. 7:135–41.
- Podile A.R., G.K. Kishore 2006. Plant growth-promoting rhizobacteria. In: Plant-Associated Bacteria (S.S. Gnanamanickam, ed.). Springer, Netherlands. 195-230.
- Rodriguez A.A, A.M. Stella, M.M Storni, G. Zulpa and M.C. Zaccaro 2006. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems. 2:7.
- Saber Z., H. Pirdashti, M. Esmaeili, A. Abbasian and A. Heidarzadeh 2012. Response of wheat growth parameters to co-inoculation of Plant Growth Promoting Rhizobacteria (PGPR) and different levels of inorganic nitrogen and phosphorus. World Applied Sciences Journal, 16(2): 213-
- Santos R.M., P.A.E. Diaz, L.L.B. Lobo and E.C. Rigobelo 2020. Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristic and applications. Front. Sustain. Food. Syst. https://doi.org/10.3389/fsufs.2020.00136
- Schädler, M., F. Buscot, S. Klotz, T. Reitz, W. Durka and J. Bumberger 2019. Investigating the consequences of climate change under different land use regime a novel experimental infrastructure. Ecosphere 10:e02635.
- Shaharoona, B., M. Arshad, Z.A. Zahir and A. Khalid 2006. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 38:2971-2975.
- Schmidt, E.L. and L.W. Belser 1982. Nitrifying bacteria, in methods of soil analysis part 2. In: Page, A.L.(Ed.), Chemical and Microbiological Processes. ASA, Wisconsin, USA. pp.1027–1042 (ASAMonographno.9).
- Shen, H., X. He, Y. Liu, Y. Chen, J. Tang and T. Guo 2016. A complex inoculant of N2-fixing, P- and K-solubilizing bacteria from a purple soil improves the growth of kiwifruit (Actinidia chinensis) plantlets. Front. Microbiol. 7.
- Tailor, A. J. and B.H. Joshi 2014. Harnessing plant growth-promoting rhizobacteria beyond nature: a review. J. Plant Nutr. 37:1534–1571. doi: 10.1080/01904167.2014.911319.
- Turner J.T. and P.A. Backman1991. Factors relating to peanut yield increase after seed treatment with Bacillus subtilis. Plant Dis. 75:347–353.
- Uysal, A., Ş. Kurt, S. Soylu, E.M. Soylu and M. Kara 2019. Identification of microorganism species in leafy vegetables using MALDI-TOF MS technique. YYU Journal of Agricultural Science. 29(4):595-602.
- Yildirim E., M. Turan, M. Ekinci, A. Dursun, R. Cakmakcı 2011. Plant growth-promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci. Res. Essay. 6(20):4389–4396.
- Ziegler, D., A. Mariotti, V. Pflüger, M. Saad, G. Vogel, M. Tonolla and X. Parret 2012. In Situ identification of plant-invasive bacteria with MALDI-TOF Mass Spectrometry. PloS ONE, 7:5
INVESTIGATION OF THE EFFECT OF PGPR ON YIELD AND SOME YIELD COMPONENTS IN WINTER WHEAT (Triticum aestivum L.)
Year 2022,
Volume: 27 Issue: 1, 127 - 133, 20.06.2022
Cansu Öksel
,
Alpay Balkan
,
Oğuz Bilgin
,
Mustafa Mirik
,
İsmet Başer
Abstract
The growth of plants promoting rhizobacteria (PGPR) that live actively in plant roots and rhizosphere and support plant growth has gained widespread importance in agriculture. This study was carried out to obtain and identify PGPR isolates from wheat soil and determine their ability and capacity on plant growth and yield. So, PGPR isolates were obtained from soil, and they were identified as Bacillus sp. (B. simplex and B. pumilus) by biochemical tests and MALDI-TOF MS. After the wheat seeds (Flamura-85) were treated PGPR, the field experiment was conducted with inoculated and non-inoculated seeds at the area of the Field Crops Department, Tekirdag Namık Kemal University in 2016-2018. The experiment was arranged in a split-plot design with three replicates for each treatment. In the experiment, some parameters such as plant height (PH), spike length (SL), number of grain per spike (NGPS), grain weight per spike (GWPS), and grain yield (GY) were evaluated and compared between treatments. The study has shown that PGPR treatments support plant growth and significantly increase yield between 9.6% and 29.29%. Especially, W3 and W4 strains (B. simplex) were showed a significant effect on grain yield. According to the results, we can mention that using PGPR promotes wheat growth and lead to increasing yield in the wheat. The use of PGPR can give promising results for sustainable and eco-friendly agricultural practices.
References
- Acevedo, E., M. Nachit and G. Ortiz-Ferrara 1991. Effects of heat stress on wheat and possible selection tools for use in breeding for tolerance. In D.A Saunders, ed. Wheat for the Nontraditional Warm Areas, p. 401-421. Mexico, D.F.: CIMMYT.
- Adesemoye A.O., M. Obini and E.O. Ugoji 2008. Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian J. Microbiol., 39, 423–426.
- Adesemoye, A., H. Torbert, and J. Kloepper 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921e929.
- Akbar M., N. Aslam, T. Khalil, S. Akhtar, E. M. Siddiqi and M.S. Iqbal 2019. Effects of seed priming with plant growth-promoting rhizobacteria on wheat yield and soil properties under contrasting soils. Journal of Plant Nutrition, 42(17). https://doi.org/10.1080/01904167.2019.1655041.
- Alsaady, M.H.M., H.A. Salim, H.M. Aboud, R.A. Al-ani and A.K. Abdulrazzaq 2020. Impact of PGPR bacteria against crown rot disease on wheat. Science Archives, 1(3), 89-97.
- Aloo, B. N., B. A Makumba and E.R. Mbega 2019. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 219, 26–39.
- Backman, P. A., M. Wilson and J.F. Murphy 1997. Bacteria for biological control of plant diseases. In N. A. Rechcigl, & J. E. Rechcigl (Eds.), Environmentally safe approaches to crop disease control (pp. 95e109). Boca Raton, FL: Lewis Publishers.
- Bashan, Y. and L.E.de-Bashan 2005. Bacteria plant growth-promotion. In: Hillel, D. (Ed.), Encyclopedia of Soils in the Environment. Elsevier, Oxford, pp. 103–115.
- Bashan, Y., L.E. de-Bashan S.R. Prabhu and J.P. Hernandez 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33.
- Battacharyya P.N and D.K. Jha 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol, 28(4):1327-50.
- Beauregard, P. B., Y. Chai, H. Vlamakis, R. Losick and R. Kolter 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. U.S.A. 110, E1621–E1630. doi: 10.1073/pnas.1218984110.
- Berendsen, E. M., R.A. Koning, J. Boekhorst, A. de Jong, O.P. Kuipers and M.H.J. Wells-Bennik, 2016. High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon. Front. Microbiol. 7. DOI: https://doi.org/10.3389/ fmicb.2016.01912.
- Bouaziz, A. and D.R. Hicks 1990. Consumption of wheat seed reserves during germination and early growth as affected by soil water potential. Plant and Soil, 128:161-165.
- Carolis, E.D., B. Posteraro, C. Lass-Flo, A. Vella, A.R. Florio, R. Torelli, C. Girmenia, C. Colozza, A.M. Tortorano, M. Sanguinetti and G. Fadda 2012. Species identification of Aspergillus, Fusariumand Mucoraleswith direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinic Microbiology Infect. 18:475-484.
- Cakmakci, R., F. Dönmez, A. Aydın and F. Sahin 2006.Growth promotion of plants by plant growth-promoting rhizo bacteria under green house and two different field soil conditions. Soil Biol. Biochem. 38:1482–1487.
- Dobbelaere, S., A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, C. Labandera-Gonzalez, J. Caballero-Mellado, J.F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, D. Kadouri, S. Sarig and Y. Okon 2001. Responses of agronomically important crops to inoculation with Azospirillum. Funct. Plant Biol. 28: 871–879.
- Duca, D., J. Lorv, C.L. Patten, D Rose and B.R. Glick 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106: 85–125. doi: 10.1007/s10482-013-0095-y
- Esitken, A., H.E. Yildiz, S. Ercisli, M.F. Donmez, M. Turan and A. Gunes 2010. Effects of plant growth-promoting bacteria (PGPB) on yield, growth, and nutrient contents of organically grown strawberry. Sci.Hortic.124:62–66.
de Freitas, J.R. and J.J. Germida 1992. Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biol. Biochem. 24:1137–1146.
- Garcia L.J.A., A. Probanza, B. Ramos, F.J.G. Manero 2003. Effects of three plant growth-promoting rhizobacteria on the growth of transplants of tomato and pepper in two different sterilized and non-sterilized peats. Arch. Agro. Soil Sci. 49: 119–127.
- Haas, D. and G. Defago 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307–319. doi: 10.1038/nrmicro1129.
- Ibiene A.A., J.U. Agogbua, I.O. Okonko and G.N. Nwachi 2012. Plant growth-promoting rhizobacteria (PGPR) as biofertilizer: effect on growth of Lycopersicum esculentus. J. American Sci. 8(2): 318–324.
- Khan, Md. A, M.M. Rahman, M. Tania, N.F. Shoshee, A. Xu and H. Chen 2013. Antioxidative potential of Duranta repens (LINN.) fruits against H2O2 induced cell death in vitro. Afr J Tradit Complement Altern Med, 10(3):436-441.
- Kilian, M., U. Steiner, B. Krebs, H. Junge, G. Schmiedeknecht and R. Hain 2000. FZB24R Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr. Bayer. 1: 72–93.
- Kloepper J.W. and M.N Schroth 1978. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of IVth International Conference on Plant Pathogenic Bacteria. pp.879–882.
- Kokalis-Burelle N., C.S. Vavrina, M.S. Reddy and J.W. Kloepper 2003. Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: Effects on transplant quality, disease, and nematode resistance. HortTech.13(3):476–482.
- Krey, T., N. Vassilev, C. Baum and B. Erichler-Lobermann 2013. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. European Journal of Soil Biology. 55:124-130.
- Kumar, A., B.R. Maurya and R. Raghuwanshi 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocataly. Agric. Biotechnol. 3:121–128.
- Kumar, A., B.R. Maurya, R. Raghuwanshi, V.S. Meena and M. Tofazzal Islam 2017. Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 36:608–617.
- Lelliott, R.A. and D.E. Stead 1987. Methods for Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford, UK.
- Lucas Garcia, J.A., A. Probanza, B. Ramos, J.J. Colon Flores and F.J. Gutierrez Monero 2014. Effects of Plant Growth Promoting Rhizobacteria (PGPRs) on the Biological Nitrogen Fixation, Nodulation, and Growth of Lupinus albus l. cv. multolupa. Eng. Life Sci. 4(1):71-77.
- Meena, K. K., A.M. Sorty, U.M. Bitla, K. Choudhary, P. Gupta and A. Pareek 2017. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci. 8:172.
- Misra M., U. Kumar, P.K. Misra and V. Prakash 2010. Efficiency of plant growth-promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv. Biol. Res. 4(2): 92–96.
- Nguyen, M.L., J. Glaes, S. Spaepen, B. Bodson, P. Jardin and P. Delaplace 2019. Biostimulant effects of Bacillus strains on wheat from in vitro towards field conditions are modulated by nitrogen supply. J. Plant. Nutr. Soil Sci. 1-10.
- Pavlovic, M., I. Huber, R. Konrad and U. Busch 2013. Application of MALDI-TOF MS for the Identification of Food-Borne Bacteria. The Open Microbiology Journal. 7:135–41.
- Podile A.R., G.K. Kishore 2006. Plant growth-promoting rhizobacteria. In: Plant-Associated Bacteria (S.S. Gnanamanickam, ed.). Springer, Netherlands. 195-230.
- Rodriguez A.A, A.M. Stella, M.M Storni, G. Zulpa and M.C. Zaccaro 2006. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems. 2:7.
- Saber Z., H. Pirdashti, M. Esmaeili, A. Abbasian and A. Heidarzadeh 2012. Response of wheat growth parameters to co-inoculation of Plant Growth Promoting Rhizobacteria (PGPR) and different levels of inorganic nitrogen and phosphorus. World Applied Sciences Journal, 16(2): 213-
- Santos R.M., P.A.E. Diaz, L.L.B. Lobo and E.C. Rigobelo 2020. Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristic and applications. Front. Sustain. Food. Syst. https://doi.org/10.3389/fsufs.2020.00136
- Schädler, M., F. Buscot, S. Klotz, T. Reitz, W. Durka and J. Bumberger 2019. Investigating the consequences of climate change under different land use regime a novel experimental infrastructure. Ecosphere 10:e02635.
- Shaharoona, B., M. Arshad, Z.A. Zahir and A. Khalid 2006. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 38:2971-2975.
- Schmidt, E.L. and L.W. Belser 1982. Nitrifying bacteria, in methods of soil analysis part 2. In: Page, A.L.(Ed.), Chemical and Microbiological Processes. ASA, Wisconsin, USA. pp.1027–1042 (ASAMonographno.9).
- Shen, H., X. He, Y. Liu, Y. Chen, J. Tang and T. Guo 2016. A complex inoculant of N2-fixing, P- and K-solubilizing bacteria from a purple soil improves the growth of kiwifruit (Actinidia chinensis) plantlets. Front. Microbiol. 7.
- Tailor, A. J. and B.H. Joshi 2014. Harnessing plant growth-promoting rhizobacteria beyond nature: a review. J. Plant Nutr. 37:1534–1571. doi: 10.1080/01904167.2014.911319.
- Turner J.T. and P.A. Backman1991. Factors relating to peanut yield increase after seed treatment with Bacillus subtilis. Plant Dis. 75:347–353.
- Uysal, A., Ş. Kurt, S. Soylu, E.M. Soylu and M. Kara 2019. Identification of microorganism species in leafy vegetables using MALDI-TOF MS technique. YYU Journal of Agricultural Science. 29(4):595-602.
- Yildirim E., M. Turan, M. Ekinci, A. Dursun, R. Cakmakcı 2011. Plant growth-promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci. Res. Essay. 6(20):4389–4396.
- Ziegler, D., A. Mariotti, V. Pflüger, M. Saad, G. Vogel, M. Tonolla and X. Parret 2012. In Situ identification of plant-invasive bacteria with MALDI-TOF Mass Spectrometry. PloS ONE, 7:5