Research Article
BibTex RIS Cite

GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES

Year 2022, Volume: 27 Issue: 1, 71 - 77, 20.06.2022
https://doi.org/10.17557/tjfc.1050448

Abstract

In this study, genetic and environmental variability, broad-sense heritability, genetic advance and correlation coefficients of pod yield, yield components, oil and protein content of ten registered peanut varieties were examined. Year (Y), location (L), year x location interaction (Y x L), genotype (G), genotype x year interaction (G x Y), genotype x location interaction (G x L) and genotype x year x location interaction (G x Y x L) were significant, but G x Y for shelling percentage was not significant. Genotypic and phenotypic variances were highest for pod yield followed by hundred pod weight, whereas all investigated traits of peanut varieties were significantly different. Broad sense heritability estimates ranged from moderate level to high. Heritability values were estimated to be maximum for shelling percentage (95.4%), hundred kernel weight (91.6%), hundred pod weight (88.3%), while moderate for pod number (63.8%), pod weight (60.4%), first quality pod ratio (63.3%), pod yield (63.2%), oil content (52.0%) and protein content (52.5%). High heritability for shelling percentage, hundred kernel weight and hundred pod weight indicated that these characteristics were affected less than the others by the environmental conditions. The magnitudes of genetic advance were observed to be very high (>50%) for hundred pod weight, 100 kernel weight, pod weight and pod yield; moderate (20-50%) for pod number, first quality pod ratio, shelling percentage and low (<20%) for oil and protein content. Significant and positive relationships were found the pod yield and pod number, pod weight, hundred pod weight and hundred kernel weight.

References

  • Akhtar, S., N. Khalid, I. Ahmed, A. Shahzad and H.A.R. Suleria. 2014. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: A review. Critical Reviews in Food Science and Nutrition 54: 1562-1575.
  • Allard, R.W. 1999. Principals of Plant Breeding. 2nd Ed. New York: John Wiley & Sons.
  • Andersen, P.C. and D.W. Gorbet. 2002. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J. Agric. Food Chem. 50: 1298-1305.
  • Anonymous. 2019a. Soil laboratory analysis results. Kahramanmaras Sutcu Imam University Agriculture Faculty Soil Science Department, Kahramanmaras-Turkey.
  • Anonymous. 2019b. Meteorological data. General Directorate of Meteorological Service, Ankara, Turkey.
  • Anonymous. 2020. Crop production statistics. Turkish Statistical Institute. www.tuik.gov.tr. (Accessed May 6, 2022)
  • AOAC. 2010. Official methods of analysis of the association of analytical chemists. 18th Edition, Washington, D.C. USA
  • Arioglu, H., H. Bakal, L. Gulluoglu, B. Onat and C. Kurt. 2018. The effect of harvesting dates on some agronomic and quality characteristics of peanut (Arachis hypogaea L.) varieties grown as a main crop in Mediterranean region (Turkey). Turkish Journal of Field Crops 23 (1): 27-37.
  • Azad, M.A.K. and M.A. Hamid. 2000. Genetic variability, character association and path analysis in groundnut (Arachis hypogaea L.). Thai. J. Agric. Sci. 33: 153-157.
  • Burton, G.W. and E.W. Devane. 1953. Estimating heritability in tall fescue (Fectuca qrundinacea) from replicated clonal material. Agronomy Journal 45 (10): 478-481.
  • Chishti, S.A.S., M. Akbar, M. Aslam and M. Anwar. 2000. Morphogenetic Evaluation for pod yield and its components in early Spanish genotypes of Groundnut (Arachis hypogaea L.). Pakistan Journal of Bio Science 3 (5): 898-899.
  • Cholin, S., M.V.C. Gowda and H.L. Nadaf. 2010. Genetic variability and association pattern among nutritional traits in recombinant inbred lines of groundnut (Arachis hypogaea L.) Indian J. Genet. 70 (1): 39-43.
  • Dashora, A. and A.K. Nagda. 2002. Genetic variability and character association in Spanish bunch groundnut. Research on Crops 3 (2): 416-420.
  • Daudi, H., H. Shimelis, I. Mathew, R. Oteng-Frimpong, C. Ojiewo and R.K. Varshney. 2021. Genetic diversity and population structure of groundnut (Arachis hypogaea L.) accessions using phenotypic traits and SSR markers: implications for rust resistance breeding. Genetic Resources and Crop Evolution 68: 581-604.
  • Deshmukh, S.N., M.S. Basu and P.S. Reddy. 1986. Genetic variability, character association and path coefficients and quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Sciences 56 (12): 816-821.
  • Dwivedi, S.L., S.N. Nigam and R.C. Nageswara Rao. 2000. Photoperiod effects on seed quality traits in peanut. Crop Science 40 (5): 1223-1227.
  • Gulluoglu, L., H. Bakal, B. Onat, C. Kurt and H. Arioglu. 2017. Comparison of agronomic and quality characteristics of some peanut (Arachis hypogaea L.) varieties grown as main and double crop in Mediterranean region. Turkish Journal of Field Crops 22 (2): 166-177.
  • Gulluoglu, L., H. Arioglu, H. Bakal and B. Onat. 2018. Effect of high air and soil temperature on yield and some yield components of peanut (Arachis hypogaea L.). Turkish Journal of Field Crops 23 (1): 62-71.
  • Hamidou, F., P. Ratnakumar, O. Halilou, O. Mponda, T. Kapewa, E. Monyo, I. Faye, B.R. Ntare, S.N. Nigam, H.D. Upadhyaya and V. Vadez. 2012. Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crops Research 126: 189–199.
  • Hanson, G.H., H.F. Robinson and R.E. Comstock. 1956. Biometrical studies on yield in segregating populations of Korean Lespedeza. Agronomy Journal 48 (6): 268-272.
  • Isleib, T.G., B.L. Tillman, H.E. Pattee, T.H. Sanders, K.W. Hendrix and L.O. Dean. 2008. Genotype-by-environment interactions for seed composition traits of breeding lines in the uniform peanut performance test. Peanut Science 35 (2): 130-138.
  • Jakkeral, S.A., H.L. Nadaf and M.V.C. Gowda. 2014. Genotypic variability for yield, its component traits and rust resistance in recombinants of groundnut (Arachis hypogaea L.) Karnataka J. Agric. Sci. 27 (1): 71-73.
  • John, K., T.M. Krishna, R.P. Vasanthi, M. Ramaiah, O. Venkateswary and P.H. Naidu. 2006. Variability studies in groundnut germplasm. Legume Res. 29 (3): 219-220.
  • John, K., R.P. Vasanthi and O. Venkateswarlu. 2007. Variability and correlation studies for pod yield and its attributes in F2 generation of six Virginia x Spanish crosses of groundnut (Arachis hypogaea L.). Legume Research 30 (4): 292-296.
  • Johnson, H.W., H.F. Robinson and R.E. Comstock. 1955. Estimation of genetic and environmental variability in soybean. Agronomy Journal 47 (7): 314-318.
  • Kadam, D.E., F.B. Patil, T.J. Bhor and P.N. Harer. 2007. Stability for dry pod yield and days to maturity in groundnut genotypes. J. Maharashtra Agric. Uni. 25 (3): 322-323.
  • Kassa, M.T., S.O. Yeboah and M. Bezabih. 2009. Profiling peanut (Arachis hypogea L.) accessions and cultivars for oleic acid and yield in Botswana. Euphytica 167 (3): 293-301.
  • Kebede, A. and T. Tana. 2014. Genotype by environment interaction and stability of pod yield of elite breeding lines of groundnut (Arachis hypogaea L.) in Eastern Ethiopia. Sci. Technol. Arts Res. J. 3 (2): 43-46. doi: http://dx.doi.org/10.4314/star.v3i2.6
  • Khote, A.C., V.W. Bendale, S.G. Bhave and P.P. Patil. 2009. Genetic variability, heritability and genetic advance in some exotic genotypes of groundnut (Arachis hypogaea L.). Crop Research 37 (1/3): 186- 191.
  • Ku, K.L., R.S. Lee, C.T. Young, and R.Y.Y. Chiou. 1998. Roasted peanut flavor and related compositional characteristics of peanut kernels of spring and fall crops grown in Taiwan. J. Agric. Food Chem. 46 (8): 3220-3224.
  • Kurt, C., H. Bakal, L. Gulluoglu, B. Onat and H. Arioglu. 2016. Determination of agronomic and quality characteristic of some peanut cultivars in the second crop conditions of the Cukurova region. Suleyman Demirel University, Journal of the Faculty of Agriculture 11 (1): 112-119 (in Turkish).
  • Kushwah, A., S. Gupta and S.R. Sharma. 2017. Genetic variability, correlation coefficient and path coefficient analysis for yield and component traits in groundnut. Indian Journal of Ecology 44 (1): 85-89.
  • Mahalakshmi, P., N. Manivannan and V. Muralidharan. 2005. Variability and correlation studies in groundnut (Arachis hypogea L.). Legume Research 28 (3): 194-197.
  • Marfo, K.O. and F.K. Padi. 1999. Yield stability of some groundnut accessions in northern Ghana. Ghana Journal of Agricultural Science 32 (2): 137-144.
  • Oteng-Frimpong, R., S.P. Konlan and N.N. Denwar. 2017. Evaluation of selected groundnut (Arachis hypogaea L.) lines for yield and haulm nutritive quality traits. International Journal of Agronomy, Article ID 7479309, 9 pages https://doi.org/10.1155/2017/7479309
  • Ozturk, G. and Z. Yildirim. 2014. Heritability estimates of some quantitative traits in potatoes. Turkish Journal of Field Crops 19 (2): 262-267.
  • Patil, P.S. and D.G. Bhapkar. 1987. Estimates of genotypic and phenotypic variability in groundnut. J. Maharashtra Agric. Uni. 12 (3): 319-321.
  • Patil, A.S., A.A. Punewar, H.R. Handanwar and K.P. Shah. 2014. Estimation of variability parameters for yield and its component traits in groundnut (Arachis hypogaea L.). The Bioscan 9 (2): 633-638.
  • Prasad, P.V.V., P.Q. Craufurd and R.J. Summerfield. 2000. Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant Soil 222: 231-239.
  • Rao, V.T., V. Venkanna, D. Bhadru and D. Bharathi. 2014. Studies on variability, character association and path analysis on groundnut (Arachis hypogaea L.). Int. J. Pure App. Biosci. 2 (2): 194-197.
  • Savage, G.P. and J.J. Keenan. 1994. The composition and nutritive value of groundnut kernels. In: Smartt J, ed., The Groundnut Crop: A Scientific Basis for Improvement. Chapman & Hall, London. pp. 173–213.
  • Savaliya, J.J., A.G. Pansuriya, P.R. Sodavadiya and R. L. Leva. 2009. Evaluation of inter and intraspecific hybrid derivatives of groundnut (Arachis hypogaea L.) for yield and its components. Legume Research 32 (2): 129-132.
  • Shinde, P.P., M.D. Khanpara, J.H. Vachhani, L.L. Jivani and V.H. Kachhadia. 2010. Genetic variability in Virginia bunch groundnut (Arachis hypogaea L.). Pl. Archives 10 (2): 703-706.
  • Tossim, H.A., J.R. Nguepjop, C. Diatta, A. Sambou, M. Seye, D. Sane, J.F. Rami and D. Fonceka. 2020. Assessment of 16 peanut (Arachis hypogaea L.) CSSLs derived from an interspecific cross for yield and yield component traits: QTL validation. Agronomy 10: 583. doi:10.3390/agronomy10040583.
  • Upadhyaya, H.D. and S.N. Nigam. 1999. Detection of epistasis for protein and oil contents and oil quality parameters in peanut. Crop Science 39 (1): 115-118.
  • Wright, S. 1921. Correlation and causation. J. Agric. Res. 20: 557-585.
  • Yildirim, M.B., A. Ozturk, F. Ikiz and H. Puskulcu. 1979. Statistical and genetic methods in plant breeding. Ministry of Food, Agriculture and Animal Husbandry, General Directorate of Agricultural Research Pub. No.14, Aegean Region Agriculture Research Institute Pub. No. 20, Menemen-Izmir, Turkey, p. 151-173.
  • Zahran, H.A. and H.S. Tawfeuk. 2019. Physicochemical properties of new peanut (Arachis hypogea L.) varieties. OCL 26: 19.
Year 2022, Volume: 27 Issue: 1, 71 - 77, 20.06.2022
https://doi.org/10.17557/tjfc.1050448

Abstract

References

  • Akhtar, S., N. Khalid, I. Ahmed, A. Shahzad and H.A.R. Suleria. 2014. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: A review. Critical Reviews in Food Science and Nutrition 54: 1562-1575.
  • Allard, R.W. 1999. Principals of Plant Breeding. 2nd Ed. New York: John Wiley & Sons.
  • Andersen, P.C. and D.W. Gorbet. 2002. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J. Agric. Food Chem. 50: 1298-1305.
  • Anonymous. 2019a. Soil laboratory analysis results. Kahramanmaras Sutcu Imam University Agriculture Faculty Soil Science Department, Kahramanmaras-Turkey.
  • Anonymous. 2019b. Meteorological data. General Directorate of Meteorological Service, Ankara, Turkey.
  • Anonymous. 2020. Crop production statistics. Turkish Statistical Institute. www.tuik.gov.tr. (Accessed May 6, 2022)
  • AOAC. 2010. Official methods of analysis of the association of analytical chemists. 18th Edition, Washington, D.C. USA
  • Arioglu, H., H. Bakal, L. Gulluoglu, B. Onat and C. Kurt. 2018. The effect of harvesting dates on some agronomic and quality characteristics of peanut (Arachis hypogaea L.) varieties grown as a main crop in Mediterranean region (Turkey). Turkish Journal of Field Crops 23 (1): 27-37.
  • Azad, M.A.K. and M.A. Hamid. 2000. Genetic variability, character association and path analysis in groundnut (Arachis hypogaea L.). Thai. J. Agric. Sci. 33: 153-157.
  • Burton, G.W. and E.W. Devane. 1953. Estimating heritability in tall fescue (Fectuca qrundinacea) from replicated clonal material. Agronomy Journal 45 (10): 478-481.
  • Chishti, S.A.S., M. Akbar, M. Aslam and M. Anwar. 2000. Morphogenetic Evaluation for pod yield and its components in early Spanish genotypes of Groundnut (Arachis hypogaea L.). Pakistan Journal of Bio Science 3 (5): 898-899.
  • Cholin, S., M.V.C. Gowda and H.L. Nadaf. 2010. Genetic variability and association pattern among nutritional traits in recombinant inbred lines of groundnut (Arachis hypogaea L.) Indian J. Genet. 70 (1): 39-43.
  • Dashora, A. and A.K. Nagda. 2002. Genetic variability and character association in Spanish bunch groundnut. Research on Crops 3 (2): 416-420.
  • Daudi, H., H. Shimelis, I. Mathew, R. Oteng-Frimpong, C. Ojiewo and R.K. Varshney. 2021. Genetic diversity and population structure of groundnut (Arachis hypogaea L.) accessions using phenotypic traits and SSR markers: implications for rust resistance breeding. Genetic Resources and Crop Evolution 68: 581-604.
  • Deshmukh, S.N., M.S. Basu and P.S. Reddy. 1986. Genetic variability, character association and path coefficients and quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Sciences 56 (12): 816-821.
  • Dwivedi, S.L., S.N. Nigam and R.C. Nageswara Rao. 2000. Photoperiod effects on seed quality traits in peanut. Crop Science 40 (5): 1223-1227.
  • Gulluoglu, L., H. Bakal, B. Onat, C. Kurt and H. Arioglu. 2017. Comparison of agronomic and quality characteristics of some peanut (Arachis hypogaea L.) varieties grown as main and double crop in Mediterranean region. Turkish Journal of Field Crops 22 (2): 166-177.
  • Gulluoglu, L., H. Arioglu, H. Bakal and B. Onat. 2018. Effect of high air and soil temperature on yield and some yield components of peanut (Arachis hypogaea L.). Turkish Journal of Field Crops 23 (1): 62-71.
  • Hamidou, F., P. Ratnakumar, O. Halilou, O. Mponda, T. Kapewa, E. Monyo, I. Faye, B.R. Ntare, S.N. Nigam, H.D. Upadhyaya and V. Vadez. 2012. Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crops Research 126: 189–199.
  • Hanson, G.H., H.F. Robinson and R.E. Comstock. 1956. Biometrical studies on yield in segregating populations of Korean Lespedeza. Agronomy Journal 48 (6): 268-272.
  • Isleib, T.G., B.L. Tillman, H.E. Pattee, T.H. Sanders, K.W. Hendrix and L.O. Dean. 2008. Genotype-by-environment interactions for seed composition traits of breeding lines in the uniform peanut performance test. Peanut Science 35 (2): 130-138.
  • Jakkeral, S.A., H.L. Nadaf and M.V.C. Gowda. 2014. Genotypic variability for yield, its component traits and rust resistance in recombinants of groundnut (Arachis hypogaea L.) Karnataka J. Agric. Sci. 27 (1): 71-73.
  • John, K., T.M. Krishna, R.P. Vasanthi, M. Ramaiah, O. Venkateswary and P.H. Naidu. 2006. Variability studies in groundnut germplasm. Legume Res. 29 (3): 219-220.
  • John, K., R.P. Vasanthi and O. Venkateswarlu. 2007. Variability and correlation studies for pod yield and its attributes in F2 generation of six Virginia x Spanish crosses of groundnut (Arachis hypogaea L.). Legume Research 30 (4): 292-296.
  • Johnson, H.W., H.F. Robinson and R.E. Comstock. 1955. Estimation of genetic and environmental variability in soybean. Agronomy Journal 47 (7): 314-318.
  • Kadam, D.E., F.B. Patil, T.J. Bhor and P.N. Harer. 2007. Stability for dry pod yield and days to maturity in groundnut genotypes. J. Maharashtra Agric. Uni. 25 (3): 322-323.
  • Kassa, M.T., S.O. Yeboah and M. Bezabih. 2009. Profiling peanut (Arachis hypogea L.) accessions and cultivars for oleic acid and yield in Botswana. Euphytica 167 (3): 293-301.
  • Kebede, A. and T. Tana. 2014. Genotype by environment interaction and stability of pod yield of elite breeding lines of groundnut (Arachis hypogaea L.) in Eastern Ethiopia. Sci. Technol. Arts Res. J. 3 (2): 43-46. doi: http://dx.doi.org/10.4314/star.v3i2.6
  • Khote, A.C., V.W. Bendale, S.G. Bhave and P.P. Patil. 2009. Genetic variability, heritability and genetic advance in some exotic genotypes of groundnut (Arachis hypogaea L.). Crop Research 37 (1/3): 186- 191.
  • Ku, K.L., R.S. Lee, C.T. Young, and R.Y.Y. Chiou. 1998. Roasted peanut flavor and related compositional characteristics of peanut kernels of spring and fall crops grown in Taiwan. J. Agric. Food Chem. 46 (8): 3220-3224.
  • Kurt, C., H. Bakal, L. Gulluoglu, B. Onat and H. Arioglu. 2016. Determination of agronomic and quality characteristic of some peanut cultivars in the second crop conditions of the Cukurova region. Suleyman Demirel University, Journal of the Faculty of Agriculture 11 (1): 112-119 (in Turkish).
  • Kushwah, A., S. Gupta and S.R. Sharma. 2017. Genetic variability, correlation coefficient and path coefficient analysis for yield and component traits in groundnut. Indian Journal of Ecology 44 (1): 85-89.
  • Mahalakshmi, P., N. Manivannan and V. Muralidharan. 2005. Variability and correlation studies in groundnut (Arachis hypogea L.). Legume Research 28 (3): 194-197.
  • Marfo, K.O. and F.K. Padi. 1999. Yield stability of some groundnut accessions in northern Ghana. Ghana Journal of Agricultural Science 32 (2): 137-144.
  • Oteng-Frimpong, R., S.P. Konlan and N.N. Denwar. 2017. Evaluation of selected groundnut (Arachis hypogaea L.) lines for yield and haulm nutritive quality traits. International Journal of Agronomy, Article ID 7479309, 9 pages https://doi.org/10.1155/2017/7479309
  • Ozturk, G. and Z. Yildirim. 2014. Heritability estimates of some quantitative traits in potatoes. Turkish Journal of Field Crops 19 (2): 262-267.
  • Patil, P.S. and D.G. Bhapkar. 1987. Estimates of genotypic and phenotypic variability in groundnut. J. Maharashtra Agric. Uni. 12 (3): 319-321.
  • Patil, A.S., A.A. Punewar, H.R. Handanwar and K.P. Shah. 2014. Estimation of variability parameters for yield and its component traits in groundnut (Arachis hypogaea L.). The Bioscan 9 (2): 633-638.
  • Prasad, P.V.V., P.Q. Craufurd and R.J. Summerfield. 2000. Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant Soil 222: 231-239.
  • Rao, V.T., V. Venkanna, D. Bhadru and D. Bharathi. 2014. Studies on variability, character association and path analysis on groundnut (Arachis hypogaea L.). Int. J. Pure App. Biosci. 2 (2): 194-197.
  • Savage, G.P. and J.J. Keenan. 1994. The composition and nutritive value of groundnut kernels. In: Smartt J, ed., The Groundnut Crop: A Scientific Basis for Improvement. Chapman & Hall, London. pp. 173–213.
  • Savaliya, J.J., A.G. Pansuriya, P.R. Sodavadiya and R. L. Leva. 2009. Evaluation of inter and intraspecific hybrid derivatives of groundnut (Arachis hypogaea L.) for yield and its components. Legume Research 32 (2): 129-132.
  • Shinde, P.P., M.D. Khanpara, J.H. Vachhani, L.L. Jivani and V.H. Kachhadia. 2010. Genetic variability in Virginia bunch groundnut (Arachis hypogaea L.). Pl. Archives 10 (2): 703-706.
  • Tossim, H.A., J.R. Nguepjop, C. Diatta, A. Sambou, M. Seye, D. Sane, J.F. Rami and D. Fonceka. 2020. Assessment of 16 peanut (Arachis hypogaea L.) CSSLs derived from an interspecific cross for yield and yield component traits: QTL validation. Agronomy 10: 583. doi:10.3390/agronomy10040583.
  • Upadhyaya, H.D. and S.N. Nigam. 1999. Detection of epistasis for protein and oil contents and oil quality parameters in peanut. Crop Science 39 (1): 115-118.
  • Wright, S. 1921. Correlation and causation. J. Agric. Res. 20: 557-585.
  • Yildirim, M.B., A. Ozturk, F. Ikiz and H. Puskulcu. 1979. Statistical and genetic methods in plant breeding. Ministry of Food, Agriculture and Animal Husbandry, General Directorate of Agricultural Research Pub. No.14, Aegean Region Agriculture Research Institute Pub. No. 20, Menemen-Izmir, Turkey, p. 151-173.
  • Zahran, H.A. and H.S. Tawfeuk. 2019. Physicochemical properties of new peanut (Arachis hypogea L.) varieties. OCL 26: 19.
There are 48 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Fatih Kıllı 0000-0001-8480-0416

Tahsin Beycioğlu This is me 0000-0001-5338-8836

Publication Date June 20, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Kıllı, F., & Beycioğlu, T. (2022). GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES. Turkish Journal Of Field Crops, 27(1), 71-77. https://doi.org/10.17557/tjfc.1050448
AMA Kıllı F, Beycioğlu T. GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES. TJFC. June 2022;27(1):71-77. doi:10.17557/tjfc.1050448
Chicago Kıllı, Fatih, and Tahsin Beycioğlu. “GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES”. Turkish Journal Of Field Crops 27, no. 1 (June 2022): 71-77. https://doi.org/10.17557/tjfc.1050448.
EndNote Kıllı F, Beycioğlu T (June 1, 2022) GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES. Turkish Journal Of Field Crops 27 1 71–77.
IEEE F. Kıllı and T. Beycioğlu, “GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES”, TJFC, vol. 27, no. 1, pp. 71–77, 2022, doi: 10.17557/tjfc.1050448.
ISNAD Kıllı, Fatih - Beycioğlu, Tahsin. “GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES”. Turkish Journal Of Field Crops 27/1 (June 2022), 71-77. https://doi.org/10.17557/tjfc.1050448.
JAMA Kıllı F, Beycioğlu T. GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES. TJFC. 2022;27:71–77.
MLA Kıllı, Fatih and Tahsin Beycioğlu. “GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES”. Turkish Journal Of Field Crops, vol. 27, no. 1, 2022, pp. 71-77, doi:10.17557/tjfc.1050448.
Vancouver Kıllı F, Beycioğlu T. GENETIC AND ENVIRONMENTAL VARIABILITY, HERITABILITY AND GENETIC ADVANCE IN POD YIELD, YIELD COMPONENTS, OIL AND PROTEIN CONTENT OF PEANUT VARIETIES. TJFC. 2022;27(1):71-7.

Cited By








Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474