Research Article
BibTex RIS Cite

The effects of Bacillus amyloliquefaciens on Mentha piperita grown under salt stress

Year 2023, , 48 - 52, 31.08.2023
https://doi.org/10.56150/tjhsl.1263608

Abstract

Climate change threatens agricultural areas and food supply security not only in our country but also worldwide. As a result, plants are exposed to many abiotic stresses such as salt stress, drought stress, etc. Various methods are being tried to cope with abiotic stress, but sustainable alternative methods are needed in agriculture and one of them is biological fertilizers. Microbial fertilizers such as plant growth promoting bacteria (PGPB) reduce the use of chemical fertilizers and support environmentally friendly, soil-friendly, and more economical production in agriculture. In this study, the effects of Bacillus amyloliquefaciens, defined as a salt tolerant species, on the morphological parameters of Mentha piperita, which has significant commercial value and was grown under salty conditions, were investigated. Surprisingly, Bacillus amyloliquefaciens did not significantly alleviate the effects of salt stress on M. piperita grown under saline conditions (0, 50, 75, and 100 mM NaCl) in almost all parameters except for water content.

Supporting Institution

Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordinatorship

Project Number

0794-YL-21

Thanks

We would like to thank Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordinator for their support to this study.

References

  • UN, D. (2016). Climate change resilience: an opportunity for reducing inequalities. United Nations, New York.
  • Ray, S., Dansana, P. K., Bhaskar, A., Giri, J., Kapoor, S., Khurana, J. P., & Tyagi, A. K. (2009). Emerging trends in functional genomics for stress tolerance in crop plants. Plant stress biology: from genomics to systems biology, 37-63.
  • Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic stress tolerance mechanisms–getting genomics going. Current opinion in plant biology, 9(2), 180-188.
  • Vij, S., & Tyagi, A. K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant biotechnology journal, 5(3), 361-380.
  • Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany, 67(3), 429-443.
  • Mantri, N., Patade, V., Penna, S., Ford, R., & Pang, E. (2012). Abiotic stress responses in plants: present and future. Abiotic stress responses in plants: metabolism, productivity and sustainability, 1-19.
  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology, 16(2), 123-132.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014.
  • Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 6(4), 54.
  • Rodziewicz, P., Swarcewicz, B., Chmielewska, K., Wojakowska, A., & Stobiecki, M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 36, 1-19.
  • Özaktan, H., Gül, A., Çakir, B., Yolageldi, L. ve Akköprü, A. 2015. Bakteriyel endofitlerin hıyar yetiştiriciliğinde biyogübre ve biyopestisit olarak kullanılma olanakları. Tubitak-COST 111O505 no’lu Proje kesin raporu.
  • Çelik, Y., Yarşi, G., & Özarslandan, A. (2020). Yararlı Bakteri Uygulamalarının Bitkisel Verim Ve Dayanıklılık Mekanizmlarına Etkileri. DÜSTAD Dünya Sağlık ve Tabiat Bilimleri Dergisi, 3(1), 37-44.
  • Camlica, E., & Tozlu, E. (2019). Biological control of Alternaria solani in tomato. Fresenius Environmental Bulletin, 28(10), 7092-7100.
  • Akça, A., & Tozlu, E. (2019). The Investigatıon of Biological Control Oppurtunities Against Gray Mold Causing Botrytis cinerea Pers: Fr in Eggplant. ICOFAAS 2019, 92.
  • Tekiner, N. (2020). Kök kanseri hastalığı [Rhizobium radiobacter (Agrobacterium tumefaciens)] ile mücadelede biyoajan bakterilerin kullanım imkânlarının araştırılması.
  • Kotan, R., Cakir, A., Ozer, H., Kordali, S., Cakmakci, R., Dadasoglu, F., Dikbas, N., Aydin, T. & Kazaz, C. (2014).
  • Antibacterial effects of Origanum onites against phytopathogenic bacteria: Possible use of the extracts from protection of disease caused by some phytopathogenic bacteria. Scientia Horticulturae, 172, 210-220.
  • Pal, K. K., Tilak, K., Saxena, A. K., Dey, R., & Singh, C. S. (2000). Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Microbiological research, 155(3), 233-242.
  • Chen, C., Lin B. T., Huang L. F., Chang (1996). The stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in particular matter of the western North Pacific marginal seas, Mar. Chem., 54, 179–190.
  • Baydar H, (2007). Tıbbi, Aromatik ve Keyf Bitkileri Bilimi ve Teknolojisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi, S.D.Ü. Yayın No: 51, 216 s.
  • Soltanbeigi, A. (2014). Çukurova bölgesi marjinal arazi koşullarında Mentha türlerinde farklı dikim zamanlarının verim ve kaliteye etkisi.
  • Karami, H., Rasekh, M., Darvishi, Y., & Khaledi, R. (2017). Effect of drying temperature and air velocity on the essential oil content of Mentha aquatica L. Journal of Essential Oil-Bearing Plants, 20(4), 1131-1136.
  • Doymaz, İ. (2006). Thin-layer drying behaviour of mint leaves. Journal of Food Engineering. 74: 370–375.
  • Kocabiyik H., Demirturk, B.S. (2008). Infrared Radiation Drying of Mint Leaves, 5(3):239-246 (In Turkish). Arslan, N. (2016). Penceremden Tıbbi Bitkiler. TÜRKTOB Dergisi, 20, 66-69.
  • Tort, N., & Türkyılmaz, B. (2003). Physiological effects of NaCl on two barley (Hordeum vulgare L.) cultivars. Turkish Journal of Field Crops, 8(2), 68-75.
  • Çoban, Ö., & Baydar, N. G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Industrial Crops and Products, 86, 251-258.
  • Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., & Khalighi, A. (2010). The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Applied Sciences Journal, 11(11), 1403-1407.
  • Kırtok, Y., Veli, S., Tükel, S., Düzenli, S., & Kılınç, M. (1994). Evaluation of salinity stress on germination characteristics and seedling growth of 3 bread wheats (Triticum aestivum L.). Tarla Bitkileri Kongresi, 25(29), 57-61.
  • Burssens, S., Himanen, K., Van de Cotte, B., Beeckman, T., Van Montagu, M., Inzé, D., & Verbruggen, N. (2000). Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 211, 632-640.
  • Shahzad, R., Khan, A. L., Bilal, S., Waqas, M., Kang, S. M., & Lee, I. J. (2017). Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 136, 68-77.
  • Baydar, N. G., & Çoban, Ö. (2017). Tuz Stresinin Nane (Mentha piperita L.)’de büyüme ile uçucu yağ miktarı ve bileşenleri üzerine etkileri. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 757-762.
  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and soil, 58(1-3), 339-366.
  • Chen, L., Liu, Y., Wu, G., Veronican Njeri, K., Shen, Q., Zhang, N., & Zhang, R. (2016). Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiologia plantarum, 158(1), 34-44.
  • Castaldi, S., Valkov, V. T., Ricca, E., Chiurazzi, M., & Isticato, R. (2023). Use of halotolerant Bacillus amyloliquefaciens RHF6 as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu. Microbiological Research, 268, 127274.
  • Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia plantarum, 133(4), 651-669.
  • Shrivastava, P., and Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131. doi: 10.1016/j.sjbs.2014.12.001.
  • Mayak, S., Tirosh, T., and Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42, 565–572. doi: 10.1016/j.plaphy.2004.05.009.
  • Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Sergeeva, E., Shah, S., and Glick, B. R. (2006). Tolerance of transgenic canola expressing a bacterial ACC deaminase gene to high concentrations of salt. World J. Microbiol. Biotechnol. 22, 277–282.
  • Hu, S., Tao, H., Qian, Q., and Guo, L. (2012). Genetics and molecular breeding for salt-tolerance in rice. Rice Genomics Genet. 3, 38–39. doi: 10.5376/rgg.2012.03.0007
Year 2023, , 48 - 52, 31.08.2023
https://doi.org/10.56150/tjhsl.1263608

Abstract

Project Number

0794-YL-21

References

  • UN, D. (2016). Climate change resilience: an opportunity for reducing inequalities. United Nations, New York.
  • Ray, S., Dansana, P. K., Bhaskar, A., Giri, J., Kapoor, S., Khurana, J. P., & Tyagi, A. K. (2009). Emerging trends in functional genomics for stress tolerance in crop plants. Plant stress biology: from genomics to systems biology, 37-63.
  • Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic stress tolerance mechanisms–getting genomics going. Current opinion in plant biology, 9(2), 180-188.
  • Vij, S., & Tyagi, A. K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant biotechnology journal, 5(3), 361-380.
  • Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany, 67(3), 429-443.
  • Mantri, N., Patade, V., Penna, S., Ford, R., & Pang, E. (2012). Abiotic stress responses in plants: present and future. Abiotic stress responses in plants: metabolism, productivity and sustainability, 1-19.
  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology, 16(2), 123-132.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014.
  • Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 6(4), 54.
  • Rodziewicz, P., Swarcewicz, B., Chmielewska, K., Wojakowska, A., & Stobiecki, M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 36, 1-19.
  • Özaktan, H., Gül, A., Çakir, B., Yolageldi, L. ve Akköprü, A. 2015. Bakteriyel endofitlerin hıyar yetiştiriciliğinde biyogübre ve biyopestisit olarak kullanılma olanakları. Tubitak-COST 111O505 no’lu Proje kesin raporu.
  • Çelik, Y., Yarşi, G., & Özarslandan, A. (2020). Yararlı Bakteri Uygulamalarının Bitkisel Verim Ve Dayanıklılık Mekanizmlarına Etkileri. DÜSTAD Dünya Sağlık ve Tabiat Bilimleri Dergisi, 3(1), 37-44.
  • Camlica, E., & Tozlu, E. (2019). Biological control of Alternaria solani in tomato. Fresenius Environmental Bulletin, 28(10), 7092-7100.
  • Akça, A., & Tozlu, E. (2019). The Investigatıon of Biological Control Oppurtunities Against Gray Mold Causing Botrytis cinerea Pers: Fr in Eggplant. ICOFAAS 2019, 92.
  • Tekiner, N. (2020). Kök kanseri hastalığı [Rhizobium radiobacter (Agrobacterium tumefaciens)] ile mücadelede biyoajan bakterilerin kullanım imkânlarının araştırılması.
  • Kotan, R., Cakir, A., Ozer, H., Kordali, S., Cakmakci, R., Dadasoglu, F., Dikbas, N., Aydin, T. & Kazaz, C. (2014).
  • Antibacterial effects of Origanum onites against phytopathogenic bacteria: Possible use of the extracts from protection of disease caused by some phytopathogenic bacteria. Scientia Horticulturae, 172, 210-220.
  • Pal, K. K., Tilak, K., Saxena, A. K., Dey, R., & Singh, C. S. (2000). Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Microbiological research, 155(3), 233-242.
  • Chen, C., Lin B. T., Huang L. F., Chang (1996). The stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in particular matter of the western North Pacific marginal seas, Mar. Chem., 54, 179–190.
  • Baydar H, (2007). Tıbbi, Aromatik ve Keyf Bitkileri Bilimi ve Teknolojisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi, S.D.Ü. Yayın No: 51, 216 s.
  • Soltanbeigi, A. (2014). Çukurova bölgesi marjinal arazi koşullarında Mentha türlerinde farklı dikim zamanlarının verim ve kaliteye etkisi.
  • Karami, H., Rasekh, M., Darvishi, Y., & Khaledi, R. (2017). Effect of drying temperature and air velocity on the essential oil content of Mentha aquatica L. Journal of Essential Oil-Bearing Plants, 20(4), 1131-1136.
  • Doymaz, İ. (2006). Thin-layer drying behaviour of mint leaves. Journal of Food Engineering. 74: 370–375.
  • Kocabiyik H., Demirturk, B.S. (2008). Infrared Radiation Drying of Mint Leaves, 5(3):239-246 (In Turkish). Arslan, N. (2016). Penceremden Tıbbi Bitkiler. TÜRKTOB Dergisi, 20, 66-69.
  • Tort, N., & Türkyılmaz, B. (2003). Physiological effects of NaCl on two barley (Hordeum vulgare L.) cultivars. Turkish Journal of Field Crops, 8(2), 68-75.
  • Çoban, Ö., & Baydar, N. G. (2016). Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Industrial Crops and Products, 86, 251-258.
  • Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., & Khalighi, A. (2010). The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Applied Sciences Journal, 11(11), 1403-1407.
  • Kırtok, Y., Veli, S., Tükel, S., Düzenli, S., & Kılınç, M. (1994). Evaluation of salinity stress on germination characteristics and seedling growth of 3 bread wheats (Triticum aestivum L.). Tarla Bitkileri Kongresi, 25(29), 57-61.
  • Burssens, S., Himanen, K., Van de Cotte, B., Beeckman, T., Van Montagu, M., Inzé, D., & Verbruggen, N. (2000). Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 211, 632-640.
  • Shahzad, R., Khan, A. L., Bilal, S., Waqas, M., Kang, S. M., & Lee, I. J. (2017). Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 136, 68-77.
  • Baydar, N. G., & Çoban, Ö. (2017). Tuz Stresinin Nane (Mentha piperita L.)’de büyüme ile uçucu yağ miktarı ve bileşenleri üzerine etkileri. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 757-762.
  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and soil, 58(1-3), 339-366.
  • Chen, L., Liu, Y., Wu, G., Veronican Njeri, K., Shen, Q., Zhang, N., & Zhang, R. (2016). Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiologia plantarum, 158(1), 34-44.
  • Castaldi, S., Valkov, V. T., Ricca, E., Chiurazzi, M., & Isticato, R. (2023). Use of halotolerant Bacillus amyloliquefaciens RHF6 as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu. Microbiological Research, 268, 127274.
  • Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia plantarum, 133(4), 651-669.
  • Shrivastava, P., and Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131. doi: 10.1016/j.sjbs.2014.12.001.
  • Mayak, S., Tirosh, T., and Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42, 565–572. doi: 10.1016/j.plaphy.2004.05.009.
  • Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Sergeeva, E., Shah, S., and Glick, B. R. (2006). Tolerance of transgenic canola expressing a bacterial ACC deaminase gene to high concentrations of salt. World J. Microbiol. Biotechnol. 22, 277–282.
  • Hu, S., Tao, H., Qian, Q., and Guo, L. (2012). Genetics and molecular breeding for salt-tolerance in rice. Rice Genomics Genet. 3, 38–39. doi: 10.5376/rgg.2012.03.0007
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Songül Tuğba Üner

Aslıhan Cesur Turgut 0000-0002-5824-971X

Project Number 0794-YL-21
Publication Date August 31, 2023
Published in Issue Year 2023

Cite

APA Üner, S. T., & Cesur Turgut, A. (2023). The effects of Bacillus amyloliquefaciens on Mentha piperita grown under salt stress. Turkish Journal of Health Science and Life, 6(2), 48-52. https://doi.org/10.56150/tjhsl.1263608