Review
BibTex RIS Cite

HYDROLOGICAL MODELING IN ENVIRONMENTAL HEALTH: ROLE, SIGNIFICANCE AND COMPARATIVE ANALYSIS OF APPLICATION METHODS

Year 2020, Volume: 3 Issue: 3, 12 - 18, 30.12.2020

Abstract

Water is one of the most important factors affecting life and environmental health. Therefore, estimating the behavior of water in nature makes it easier to take precautions for pollutants that affect environmental health and to prevent such problems. At this point, to estimate the behavior of the water, the hydrological cycle should be evaluated on a watershed basis and hydrological modeling methods are needed within the framework of climate projection. Nowadays, many software is used for the creating of these models. This software evaluates various climatic and hydrologic parameters such as flow, precipitation, wind, temperature, solar radiation according to the application methods, as well as need topographical components such as slope, elevation, aspect of the study area, and terrain features such as soil characteristics and land use.
Hydrological modeling software plays a significant role in the prediction and monitoring of problems such as poor water quality, pollution, particle and sediment transport, diffusion of oil and petroleum derivatives, and microplastic distribution, which are frequently encountered in environmental health.
Within the scope of this study, information about the usage potentials and data requirements of hydrological modeling software in the field of environmental health is given and among them, the advantages and disadvantages of the most preferred software on the global scale, SWAT, WEAP, MIKE Zero, Delft3D are discussed comparatively. The findings are presented in the form of suggestions for the management planning of environmental health and its integration into decision support systems.

References

  • UNESCO-WWAP. Water for People, Water for Life: The United Nations World Water Development Report. UNESCO Publishing/ Earthscan. Paris, London., 2003.
  • Deltares. Delft 3D Hydro-Morpho dynamics User Manual, 2020.
  • General Directorate of State Hydraulic Works (DSI). Soil Water Resources; c2020. [cited 2020 May 31]. Available from: https://www.dsi.gov.tr/toprak-ve-su-kaynaklari.
  • DHI. MIKE 21: Flow Model Hydrodynamic Module User Guide. 2017.
  • Falkenmark M. The massive water scarcity now threatening, Africa: Why isn't it being addressed?. AMBIO. 1989;112-118.
  • Freeze RA, Cherry JA. Groundwater. Chapter 2: Physical Properties and Principles New Jersey: Prentice-Hall International, Inc. 1979;14-79.
  • Gleick PH. Water resources. In Encyclopedia of Climate and Weather. Oxford University Press. New York, 1996;817-823.
  • Munsuz N, Ünver İ. Su Kalitesi. Ankara University, Publish No: 1389, Lecture Book: 403, Ankara. 1995.
  • Neitsch SL, Arnold, JG, Kiniry JR. SWAT (Soil and Water Assessment Tool) User’s Manual, TAMU, 2002.
  • Wang QG, Li SB, Qi C, Ding F. A Review of Surface Water Quality Models, The Scientific World Journal. 2013, https://doi.org/10.1155/2013/231768.
  • SEI. Water Evaluation and Planning System (WEAP) User Guide. 2015.
  • Song X, Zhang J, Zhan C, Xuan Y, Ye M, Xu C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications, Journal of Hydrology, 523, 2015; 739-757. https://doi.org/10.1016/j.jhydrol.2015.02.013.
  • TURKSTAT (TUIK). Population Projections and Estimates Database; c2020. [cited 2020 May 31]. Available from: https://www.tuik.gov.tr.
  • USGS. The Water Cycle (Natural water cycle); c2020 [cited 2020 May 31]. Available from: https://www.usgs.gov/media/images/water-cyc”le-natural-water-cycle.
Year 2020, Volume: 3 Issue: 3, 12 - 18, 30.12.2020

Abstract

Su, yaşamı ve çevre sağlığını etkileyen en önemli aktörlerden biridir. Bu nedenle suyun doğadaki davranışının tahmin edilmesi, çevre sağlığını etkileyen kirleticiler için de önlem almayı ve bu tarz sorunların önüne geçmeyi kolaylaştırmaktadır. Bu noktada suyun davranışını tahmin etmek için hidrolojik döngünün havza bazında değerlendirilmesi ve iklim projeksiyonu çerçevesinde hidrolojik modelleme yöntemlerine ihtiyaç duyulmaktadır. Söz konusu modellemelerin kurgulanmasında günümüzde birçok yazılım kullanılmaktadır. Bu yazılımlar uyguladıkları yönteme göre akış, yağış, rüzgar, sıcaklık, güneş radyasyonu vb. çeşitli iklimsel ve hidrolojik parametreleri değerlendirmekte olup, bunun yanında çalışma konusu olan bölgeye ait eğim, yükseklik, bakı gibi topografik unsurlar ile toprak özellikleri, arazi kullanımı gibi arazi özelliklerine de gereksinim duymaktadır.
Hidrolojik modelleme yazılımları, çevre sağlığı alanında sıklıkla karşılaşılan sorunlardan kötü su kalitesi, kirlilik, partikül ve sediman taşınımı, yağ ve petrol türevlerinin yayılması, mikroplastik dağılımı gibi problemlerin tahmini ve izlenmesinde önemli rol oynamaktadır.
Bu derleme çalışma kapsamında, hidrolojik modelleme yazılımlarının çevre sağlığı alanında kullanım potansiyelleri ve veri gereksinimleri konusunda bilgi verilerek, bunlar içerisinden küresel ölçekte en çok tercih edilen SWAT, WEAP, MIKE Zero, Delft3D isimli yazılımların çevre sağlığı alanına yönelik avantajları ve dezavantajları karşılaştırılmalı olarak tartışılmıştır. Elde edilen bulgular, çevre sağlığı alanındaki yönetim planlamalarına ve karar destek sistemlerine entegrasyonuna ilişkin öneriler şeklinde sunulmuştur.

References

  • UNESCO-WWAP. Water for People, Water for Life: The United Nations World Water Development Report. UNESCO Publishing/ Earthscan. Paris, London., 2003.
  • Deltares. Delft 3D Hydro-Morpho dynamics User Manual, 2020.
  • General Directorate of State Hydraulic Works (DSI). Soil Water Resources; c2020. [cited 2020 May 31]. Available from: https://www.dsi.gov.tr/toprak-ve-su-kaynaklari.
  • DHI. MIKE 21: Flow Model Hydrodynamic Module User Guide. 2017.
  • Falkenmark M. The massive water scarcity now threatening, Africa: Why isn't it being addressed?. AMBIO. 1989;112-118.
  • Freeze RA, Cherry JA. Groundwater. Chapter 2: Physical Properties and Principles New Jersey: Prentice-Hall International, Inc. 1979;14-79.
  • Gleick PH. Water resources. In Encyclopedia of Climate and Weather. Oxford University Press. New York, 1996;817-823.
  • Munsuz N, Ünver İ. Su Kalitesi. Ankara University, Publish No: 1389, Lecture Book: 403, Ankara. 1995.
  • Neitsch SL, Arnold, JG, Kiniry JR. SWAT (Soil and Water Assessment Tool) User’s Manual, TAMU, 2002.
  • Wang QG, Li SB, Qi C, Ding F. A Review of Surface Water Quality Models, The Scientific World Journal. 2013, https://doi.org/10.1155/2013/231768.
  • SEI. Water Evaluation and Planning System (WEAP) User Guide. 2015.
  • Song X, Zhang J, Zhan C, Xuan Y, Ye M, Xu C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications, Journal of Hydrology, 523, 2015; 739-757. https://doi.org/10.1016/j.jhydrol.2015.02.013.
  • TURKSTAT (TUIK). Population Projections and Estimates Database; c2020. [cited 2020 May 31]. Available from: https://www.tuik.gov.tr.
  • USGS. The Water Cycle (Natural water cycle); c2020 [cited 2020 May 31]. Available from: https://www.usgs.gov/media/images/water-cyc”le-natural-water-cycle.
There are 14 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Eren Germeç 0000-0003-1788-6189

Okan Ürker 0000-0002-5103-7757

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

APA Germeç, E., & Ürker, O. (2020). HYDROLOGICAL MODELING IN ENVIRONMENTAL HEALTH: ROLE, SIGNIFICANCE AND COMPARATIVE ANALYSIS OF APPLICATION METHODS. Turkish Journal of Health Science and Life, 3(3), 12-18.