Research Article
BibTex RIS Cite

Investigation of Antibacterial and Some Physical Properties of Dental Luting Cements with Natural Plant Extracts

Year 2022, Volume: 5 Issue: 1, 45 - 52, 23.03.2022

Abstract

Aim: The aim of this study is to improve the antibacterial properties and investigate the physical properties of modified dental luting cements (polycarboxylate cement, glass ionomer cement, dual-cure cement, composite resin cement) with oleuropein addition.
Materials and Methods: The dental luting cements were modified by adding Oleuropein 1% by weight. Unmodified luting cements were referred as the control group. In order to determine the antibacterial effect of each group Modified Direct Contact Test method and E. faecalis was used. The microhardness values of all samples was measured with Vickers microhardness tester. All samples were evaluated by Scanning Electron Microscopy (SEM).
Results: Fewer bacterial colonies were detected in the media of the experimental group compared to the control group. While the Vickers microhardness values of polymer-containing cements decreased with the addition of oleuropein, no statistical difference was found in polycarboxylate and glass ionomer cement.
Conclusion: According to the results of this study, the addition of oleuropein improved the antibacterial properties of the luting cements but physical properties of resin based cements are negatively affected. The results obtained may shed light on the studies to be carried out on the development of luting cements.

Supporting Institution

This study is supported by the Scientific Research Projects Coordination Unit of Süleyman Demirel University with the project numbered TDH-2020-7496.

Project Number

TDH-2020-7496

Thanks

This study is supported by the Scientific Research Projects Coordination Unit of Süleyman Demirel University with the project numbered TDH-2020-7496.

References

  • 1. Hill EE. Dental Cements for Definitive Luting: A Review and Practical Clinical Considerations. Dent Clin North Am., 51(3), (2007), 643-658. https://doi.org/10.1016/j.cden.2007.04.002
  • 2. Wingo K. A review of dental cements. J Vet Dent. 35(1), (2018), 18-27. https://doi.org/10.1177/0898756418755339
  • 3. Sakaguchi RL, Ferracane JL, Powers JM (2019). Craig’s Restorative Dental Materials. 273-292. (14th Ed). Elsevier, St. Louis, Missouri.
  • 4. Hill E, Lott J. A clinically focused discussion of luting materials: Luting materials. Aust Dent J., 56, (2011), 67-76. https://doi.org/10.1111/j.1834-7819.2010.01297.
  • 5. Rosenstiel SF, Land MF (2015): Güncel Sabit Protezler. 774-790. (5th Ed). Palme Yayınevi, Mosby, St Louis.
  • 6. Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent., 114(4), (2015), 554-559. https://doi.org/10.1016/j.prosdent.2015.04.001
  • 7. Ebadian B, Fathi A, Savoj M. In vitro evaluation of the effect of different luting cements and tooth preparation angle on the microleakage of zirconia crowns. Corbella S, editör. Int J Dent., 2021, (2021), 1-7. https://doi.org/10.1155/2021/8461579
  • 8. Unosson E, Cai Y, Jiang X, Lööf J, Welch K, Engqvist H. Antibacterial properties of dental luting agents: Potential to hinder the development of secondary caries. Int J Dent., 2012, (2012), 1-7. http://dx.doi.org/10.1155/2012/529495
  • 9. Li W, Qi M, Sun X, Chi M, Wan Y, Zheng X, vd. Novel dental adhesive containing silver exchanged EMT zeolites against cariogenic biofilms to combat dental caries. Microporous Mesoporous Mater, 299, (2020), 110113. https://doi.org/10.1016/j.micromeso.2020.110113
  • 10. Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater, 19(6), (2003), 449-457. https://doi.org/10.1016/S0109-5641(02)00102-1
  • 11. Siqueira, P. C., Ana-Paula-Rodrigues Magalhães, W. C., Pires, F. C. P., Silveira-Lacerda, E. P., Carrião, M. S., Bakuzis, A. F., ... & Estrela, C. Cytotoxicity of glass ionomer cements containing silver nanoparticles. Journal of clinical and experimental dentistry, 7(5), (2015), 622. http://dx.doi.org/10.4317/jced.52566
  • 12. Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: A review of the current literature. J Prosthet Dent., 80(3), (1998), 280-301. https://doi.org/10.1016/S0022-3913(98)70128-3
  • 13. Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci., 11(2), (2010), 458-479. https://doi.org/10.3390/ijms11020458
  • 14. de Bock M, Thorstensen EB, Derraik JGB, Henderson HV, Hofman PL, Cutfield WS. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res., 57(11), (2013), 2079-2085. https://doi.org/10.1002/mnfr.201200795
  • 15. Sudjana AN, D’Orazio C, Ryan V, Rasool N, Ng J, Islam N, vd. Antimicrobial activity of commercial olea europaea (olive) leaf extract. Int J Antimicrob Agents, 33(5), (2009), 461-463. https://doi.org/10.1016/j.ijantimicag.2008.10.026
  • 16. Benavente-Garcı́a O, Castillo J, Lorente J, Ortuño A, Del Rio JA. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68(4), (2000), 457-462. https://doi.org/10.1016/S0308-8146(99)00221-6
  • 17. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev., 18(1), (2005), 98-112. https://doi.org/10.1079/NRR200495
  • 18. Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Dent Traumatol,12(4), (1996), 179-184. https://doi.org/10.1111/j.1600-9657.1996.tb00511.
  • 19. Eldeniz AU, Hadimli HH, Ataoglu H, Ørstavik D. Antibacterial effect of selected root-end filling materials. J Endod., 32(4), (2006), 345-349. https://doi.org/10.1016/j.joen.2005.09.009
  • 20. Milutinović-Nikolić AD, Medić VB, Vuković ZM. Porosity of different dental luting cements. Dent Mater, 23(6), (2007), 674-678. https://doi.org/10.1016/j.dental.2006.06.006
  • 21. Takahashi Y, Imazato S, Kaneshiro A, Ebisu S, Frencken J, Tay F. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater, 22(7), (2006), 647-652. https://doi.org/10.1016/j.dental.2005.08.003
  • 22. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil, 10(5), (1983), 373-381. https://doi.org/10.1111/j.1365-2842.1983.tb00133.
  • 23. Palmer G, Jones FH, Billington RW, Pearson GJ. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials, 25(23), (2004), 5423-5431. https://doi.org/10.1016/j.biomaterials.2003.12.051
  • 24. Lessa FCR, Aranha AMF, Nogueira I, Giro EMA, Hebling J, Costa CA de S. Toxicity of chlorhexidine on odontoblast-like cells. J Appl Oral Sci, 18(1), (2010), 50-58. https://doi.org/10.1590/S1678-77572010000100010
  • 25. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Camargo ER de, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents, 34(2), (2009), 103-110. https://doi.org/10.1016/j.ijantimicag.2009.01.017
  • 26. Cheng Y-J, Zeiger DN, Howarter JA, Zhang X, Lin NJ, Antonucci JM, vd. In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res B Appl Biomater, 97B(1), (2011), 124-131. https://doi.org/10.1002/jbm.b.31793
  • 27. Kasraei S, Sami L, Hendi S, AliKhani M-Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod, 39(2), (2014), 109. https://doi.org/10.5395/rde.2014.39.2.109
  • 28. Casas-Sanchez J, Alsina MA, Herrlein MK, Mestres C. Interaction between the antibacterial compound, oleuropein, and model membranes. Colloid Polym Sci, 285(12), (2007), 1351-1360. https://doi.org/10.1007/s00396-007-1693-x
  • 29. Cicerale S, Lucas L, Keast R. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol, 23(2), (2012), 129-135. https://doi.org/10.1016/j.copbio.2011.09.006
  • 30. Bigagli E, Cinci L, Paccosi S, Parenti A, D’Ambrosio M, Luceri C. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol, 43, (2017), 147-155. https://doi.org/10.1016/j.intimp.2016.12.012
  • 31. Pereira A, Ferreira I, Marcelino F, Valentão P, Andrade P, Seabra R, vd. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 12(5), (2007), 1153-1162. https://doi.org/10.3390/12051153
  • 32. Li X, Liu Y, Jia Q, LaMacchia V, O’Donoghue K, Huang Z. A systems biology approach to investigate the antimicrobial activity of oleuropein. J Ind Microbiol Biotechnol, 43(12), (2016), 1705-1717. https://doi.org/10.1007/s10295-016-1841-8
  • 33. Giamarellos-Bourboulis EJ, Geladopoulos T, Chrisofos M, Koutoukas P, Vassiliadis J, Alexandrou I, vd. Oleuropeın: A novel ımmunomodulator conferrıng prolonged survıval ın experımental sepsıs by pseudomonas aerugınosa. Shock, 26(4), (2006), 410-416. https://doi: 10.1097/01.shk.0000226342.70904.06
  • 34. Lee O-H, Lee B-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour Technol, 101(10), (2010), 3751-3754. https://doi.org/10.1016/j.biortech.2009.12.052
  • 35. Sousa A, Ferreira ICFR, Calhelha R, Andrade PB, Valentão P, Seabra R, vd. Phenolics and antimicrobial activity of traditional stoned table olives ‘alcaparra’. Bioorg Med Chem, 14(24), (2006), 8533-8538. https://doi.org/10.1016/j.bmc.2006.08.027
  • 36. Milutinović-Nikolić AD, Medić VB, Vuković ZM. Porosity of different dental luting cements. Dent Mater, 23(6), (2007), 674-678. https://doi.org/10.1016/j.dental.2006.06.006
Year 2022, Volume: 5 Issue: 1, 45 - 52, 23.03.2022

Abstract

Project Number

TDH-2020-7496

References

  • 1. Hill EE. Dental Cements for Definitive Luting: A Review and Practical Clinical Considerations. Dent Clin North Am., 51(3), (2007), 643-658. https://doi.org/10.1016/j.cden.2007.04.002
  • 2. Wingo K. A review of dental cements. J Vet Dent. 35(1), (2018), 18-27. https://doi.org/10.1177/0898756418755339
  • 3. Sakaguchi RL, Ferracane JL, Powers JM (2019). Craig’s Restorative Dental Materials. 273-292. (14th Ed). Elsevier, St. Louis, Missouri.
  • 4. Hill E, Lott J. A clinically focused discussion of luting materials: Luting materials. Aust Dent J., 56, (2011), 67-76. https://doi.org/10.1111/j.1834-7819.2010.01297.
  • 5. Rosenstiel SF, Land MF (2015): Güncel Sabit Protezler. 774-790. (5th Ed). Palme Yayınevi, Mosby, St Louis.
  • 6. Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent., 114(4), (2015), 554-559. https://doi.org/10.1016/j.prosdent.2015.04.001
  • 7. Ebadian B, Fathi A, Savoj M. In vitro evaluation of the effect of different luting cements and tooth preparation angle on the microleakage of zirconia crowns. Corbella S, editör. Int J Dent., 2021, (2021), 1-7. https://doi.org/10.1155/2021/8461579
  • 8. Unosson E, Cai Y, Jiang X, Lööf J, Welch K, Engqvist H. Antibacterial properties of dental luting agents: Potential to hinder the development of secondary caries. Int J Dent., 2012, (2012), 1-7. http://dx.doi.org/10.1155/2012/529495
  • 9. Li W, Qi M, Sun X, Chi M, Wan Y, Zheng X, vd. Novel dental adhesive containing silver exchanged EMT zeolites against cariogenic biofilms to combat dental caries. Microporous Mesoporous Mater, 299, (2020), 110113. https://doi.org/10.1016/j.micromeso.2020.110113
  • 10. Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater, 19(6), (2003), 449-457. https://doi.org/10.1016/S0109-5641(02)00102-1
  • 11. Siqueira, P. C., Ana-Paula-Rodrigues Magalhães, W. C., Pires, F. C. P., Silveira-Lacerda, E. P., Carrião, M. S., Bakuzis, A. F., ... & Estrela, C. Cytotoxicity of glass ionomer cements containing silver nanoparticles. Journal of clinical and experimental dentistry, 7(5), (2015), 622. http://dx.doi.org/10.4317/jced.52566
  • 12. Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: A review of the current literature. J Prosthet Dent., 80(3), (1998), 280-301. https://doi.org/10.1016/S0022-3913(98)70128-3
  • 13. Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci., 11(2), (2010), 458-479. https://doi.org/10.3390/ijms11020458
  • 14. de Bock M, Thorstensen EB, Derraik JGB, Henderson HV, Hofman PL, Cutfield WS. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res., 57(11), (2013), 2079-2085. https://doi.org/10.1002/mnfr.201200795
  • 15. Sudjana AN, D’Orazio C, Ryan V, Rasool N, Ng J, Islam N, vd. Antimicrobial activity of commercial olea europaea (olive) leaf extract. Int J Antimicrob Agents, 33(5), (2009), 461-463. https://doi.org/10.1016/j.ijantimicag.2008.10.026
  • 16. Benavente-Garcı́a O, Castillo J, Lorente J, Ortuño A, Del Rio JA. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68(4), (2000), 457-462. https://doi.org/10.1016/S0308-8146(99)00221-6
  • 17. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev., 18(1), (2005), 98-112. https://doi.org/10.1079/NRR200495
  • 18. Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Dent Traumatol,12(4), (1996), 179-184. https://doi.org/10.1111/j.1600-9657.1996.tb00511.
  • 19. Eldeniz AU, Hadimli HH, Ataoglu H, Ørstavik D. Antibacterial effect of selected root-end filling materials. J Endod., 32(4), (2006), 345-349. https://doi.org/10.1016/j.joen.2005.09.009
  • 20. Milutinović-Nikolić AD, Medić VB, Vuković ZM. Porosity of different dental luting cements. Dent Mater, 23(6), (2007), 674-678. https://doi.org/10.1016/j.dental.2006.06.006
  • 21. Takahashi Y, Imazato S, Kaneshiro A, Ebisu S, Frencken J, Tay F. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater, 22(7), (2006), 647-652. https://doi.org/10.1016/j.dental.2005.08.003
  • 22. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil, 10(5), (1983), 373-381. https://doi.org/10.1111/j.1365-2842.1983.tb00133.
  • 23. Palmer G, Jones FH, Billington RW, Pearson GJ. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials, 25(23), (2004), 5423-5431. https://doi.org/10.1016/j.biomaterials.2003.12.051
  • 24. Lessa FCR, Aranha AMF, Nogueira I, Giro EMA, Hebling J, Costa CA de S. Toxicity of chlorhexidine on odontoblast-like cells. J Appl Oral Sci, 18(1), (2010), 50-58. https://doi.org/10.1590/S1678-77572010000100010
  • 25. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Camargo ER de, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents, 34(2), (2009), 103-110. https://doi.org/10.1016/j.ijantimicag.2009.01.017
  • 26. Cheng Y-J, Zeiger DN, Howarter JA, Zhang X, Lin NJ, Antonucci JM, vd. In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res B Appl Biomater, 97B(1), (2011), 124-131. https://doi.org/10.1002/jbm.b.31793
  • 27. Kasraei S, Sami L, Hendi S, AliKhani M-Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod, 39(2), (2014), 109. https://doi.org/10.5395/rde.2014.39.2.109
  • 28. Casas-Sanchez J, Alsina MA, Herrlein MK, Mestres C. Interaction between the antibacterial compound, oleuropein, and model membranes. Colloid Polym Sci, 285(12), (2007), 1351-1360. https://doi.org/10.1007/s00396-007-1693-x
  • 29. Cicerale S, Lucas L, Keast R. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol, 23(2), (2012), 129-135. https://doi.org/10.1016/j.copbio.2011.09.006
  • 30. Bigagli E, Cinci L, Paccosi S, Parenti A, D’Ambrosio M, Luceri C. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol, 43, (2017), 147-155. https://doi.org/10.1016/j.intimp.2016.12.012
  • 31. Pereira A, Ferreira I, Marcelino F, Valentão P, Andrade P, Seabra R, vd. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 12(5), (2007), 1153-1162. https://doi.org/10.3390/12051153
  • 32. Li X, Liu Y, Jia Q, LaMacchia V, O’Donoghue K, Huang Z. A systems biology approach to investigate the antimicrobial activity of oleuropein. J Ind Microbiol Biotechnol, 43(12), (2016), 1705-1717. https://doi.org/10.1007/s10295-016-1841-8
  • 33. Giamarellos-Bourboulis EJ, Geladopoulos T, Chrisofos M, Koutoukas P, Vassiliadis J, Alexandrou I, vd. Oleuropeın: A novel ımmunomodulator conferrıng prolonged survıval ın experımental sepsıs by pseudomonas aerugınosa. Shock, 26(4), (2006), 410-416. https://doi: 10.1097/01.shk.0000226342.70904.06
  • 34. Lee O-H, Lee B-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour Technol, 101(10), (2010), 3751-3754. https://doi.org/10.1016/j.biortech.2009.12.052
  • 35. Sousa A, Ferreira ICFR, Calhelha R, Andrade PB, Valentão P, Seabra R, vd. Phenolics and antimicrobial activity of traditional stoned table olives ‘alcaparra’. Bioorg Med Chem, 14(24), (2006), 8533-8538. https://doi.org/10.1016/j.bmc.2006.08.027
  • 36. Milutinović-Nikolić AD, Medić VB, Vuković ZM. Porosity of different dental luting cements. Dent Mater, 23(6), (2007), 674-678. https://doi.org/10.1016/j.dental.2006.06.006
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Tolga Canbol 0000-0002-9211-0295

Suha Turkaslan 0000-0002-8933-7149

Emel Sesli Çetin 0000-0001-5231-3824

Banu Esencan Türkaslan 0000-0003-3948-6207

Şule Sultan Uğur 0000-0002-6485-7172

Merve Köle This is me 0000-0002-7516-7599

Project Number TDH-2020-7496
Publication Date March 23, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Canbol, T., Turkaslan, S., Sesli Çetin, E., Esencan Türkaslan, B., et al. (2022). Investigation of Antibacterial and Some Physical Properties of Dental Luting Cements with Natural Plant Extracts. Turkish Journal of Health Science and Life, 5(1), 45-52.