Research Article
BibTex RIS Cite

Daily Dose Dependent Effects of Fluoxetine-HCl (FLX) on Heart Tissue of Zebrafish (Danio rerio Hamilton, 1822)

Year 2018, Volume: 3 Issue: 2, 272 - 276, 25.12.2018

Abstract

The aim of this study is to
investigate the daily dose dependent effects of Fluoxetine-HCl (FLX) on
antioxidant enzymes (CAT, GSH), lipid peroxidation levels (MDA) and total
protein (TP) levels of zebrafish heart tissue. FLX is the active compound of
the antidepressant Prozac™. FLX acts as a selective serotonin reuptake
inhibitor (SSRI) in humans. This study was planned as a model to investigate
the dose dependent effects of daily intake doses of FLX, which adapted from
human proportionally to weight of zebrafish. Biochemical analyses catalase
(CAT), glutatyon (GSH), lipid peroksidasyon levels (MDA) and total protein (TP)
were detected using spectrophotometric methods. In this study, there was not
found any negative effects of FLX on catalase and glutation activity,
malondialdehyde levels and total protein levels of zebrafish heart tissue
during specified periods.

References

  • Abreu MS, Koakoski G, Ferreira D, Oliveira TA, Santos da Rosa JG, Gusso D, Varrone Giacomini AC, Piato AL, Barcellos LJG. 2016. Diazepam and Fluoxetine decrease the stress response in zebrafish. PLUS ONE, 9/7: 1–5.
  • Aebi H. 1974. Catalase in vitro in: Methods of enzymatic analysis. Edited by H U Bergmeyer (2nd ed, FL) 121.
  • Airhart MJ, Lee DH, Wilson TD, Miller BE, Miller MN, Skalko RG. 2007. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicology and Teratology, 29: 652–664.
  • Beutler E. 1974. Glutathione in red cell metabolism: A manual of biochemical methods, 2nd ed., Grune and Stratton, NY, pp. 112–114.
  • Bradford MM. 1976. A Rapid Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72: 248–254.
  • Briggs JP. 2002. The zebrafish: a new model organism for integrative physiology. AJP Regulatory Integrative and Comparative Physiology, 282/R3–R9.
  • Chen HH, Zha JM, Yuan LL, Wang ZJ. 2015. Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea. Chemosphere, 119: 856e862.
  • Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaut R, Scott I, Beis D, Xiao T, Baier H, Jan LY. 2008. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol, 6:e109.
  • Ding J, Lu G, Li Y. 2016. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere, 148:21e31.
  • Dvornikov AV, Dewan S, Alekhina OV, Pickett FB, Tombe PP. 2014. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte. The Journal of Physiology, 592: 1949–1956.
  • Gonzalez-Rey M, Bebianno MJ. 2013. Does selective serotonin reuptake inhibitör (SSRI) fluoxetine affects mussel Mytilus galloprovincialis? Environmental Pollution, 173: 200–209.
  • Kalichaka F, Idalencio R, Rosaa JGS, Oliveiraa TA, Koakoskia G, Gussoc D, Giacominia ACV, Barcellosa HHA, Fagundes M, Piato AL, Barcellos LJG. 2016. Waterborne psychoactive drugs impair the initial development of Zebrafish. Environmental Toxicology and Pharmacology, 41: 89–94.
  • Kayhan FE, Süsleyici B, Kaymak G, Koldemir Gündüz M, Tartar Ş, Esmer HE, Akbulut C, Çevik M, Yön Ertuğ ND. 2017. The sublethal disrupting effects of fluoxetine-HCl (FLX) on catalase (CAT) activity and malondialdeyde (MDA) levels in zebrafish Danio rerio. Fresenius Environmental Bulletin, 26/6: 3768–3772.
  • Ledwozyw A, Michalak D, Stepien A, Kadziolka A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 155:275–280.
  • Mika J, Jurga AM, Starnowska J, Wasylewski M, Rojewska E, Makuch W, Kwiatkowski K, Malek N, Przewlocka B. 2015. Effects of chronic doxepin and amitriptyline administration in naive mice and in neuropathic pain mice model. Neuroscience, 294: 38–50.
  • Mishra P, Gong Z, Kelly BC. 2017. Assessing biological effects of fluoxetine in developing zebrafish embryos using gas chromatography-mass spectrometry based metabolomics. Chemosphere, 1887157e167.
  • Oliveira MR. 2016. Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicology Letters, 256: 185–191.
  • Rider SA, Tucker CS, del-Pozo J, Rose KN, MacRae CA, Bailey MA, Mullins JJ. 2012. Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae. The Journal of Physiology, 590: 1803–1809.
  • Sehring IM, Jahn C, Weidinger G. 2016. Zebrafish fin and heart: What’s special about regeneration? Current Opinion in Genetics & Development, 40: 48–56.
  • Shafik AM, Cifuentes D. 2018. Zebrafish as a Tool to Study Congenital Heart Diseases. Encyclopedia of Cardiovascular Research and Medicine, 771–778.
  • Stoyek MR, Croll RP, Smith FM. 2015. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). Journal of Comparative Neurology, 523: 1683-1700.
  • Stoyek MR, Croll RP, Smith FM. 2016. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. American Journal of Physiology-Heart and Circulatory Physiology, 311: H676–H688.
  • Stoyek RM, Jonz MG, Smith FM, Croll RP. 2017. Distribution and chronotropic effects of serotonin in the zebrafish heart. Autonomic Neuroscience: Basic and Clinical, 206: 43–50.
  • Sun G, Liu K. 2017. Developmental toxicity and cardiac effects of buthyl phthalate in zebrafish embryos. Aquatic Toxicology, 192: 165-170.
  • Wu M, Liua S, Huc L, Qub H, Pana C, Leic P, Shenb Y, Yanga M. 2017. Global transcriptomic analysis of zebrafish in response to embryonic exposure to three antidepressants, amitriptyline, fluoxetine and mianserin. Aquatic Toxicology, 192: 274–283.
  • Yang M, Qiu W, Chen J, Zhan J, Pan C, Lei X, Wu M. 2014. Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquatic Toxicology, 151: 68–76.
  • Zeng XI. 2018. Zebrafish. Encyclopedia of Cardiovascular Research and Medicine, 759–770.

Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri

Year 2018, Volume: 3 Issue: 2, 272 - 276, 25.12.2018

Abstract

Bu çalışmanın amacı,
Fluoksetin-HCl’in (FLX) zebra balığı kalp dokusunda antioksidan enzimler (CAT,
GSH), lipid peroksidasyon (MDA) ve total protein (TP) düzeyleri üzerine
insanlarda kullanılan günlük doza bağlı etkilerinin araştırılmasıdır. FLX,
insanlarda antidepresan olarak kullanılan Prozac™’ın etken maddesi ve SSRI
(Selective Serotonine Reuptake Inhibitor) olarak bilinen bir serotonin geri
alım inhibitörüdür. Bu çalışmada FLX’in günlük uygulama dozu zebra balıklarına
adapte edilmiştir. Biyokimyasal analizler olan katalaz (CAT), glutatyon (GSH),
lipid peroksidasyon düzeyleri (MDA) ve total protein (TP) miktarları
spektrofotometrik yöntemlerle belirlenmiştir. Bu çalışmada FLX’in belirlenen
zaman aralıklarında zebra balığı kalp dokusu katalaz ve glutatyon aktivitesi,
malondialdehit seviyeleri ve total protein düzeyleri üzerine olumsuz bir etkisi
saptanmamıştır. 

References

  • Abreu MS, Koakoski G, Ferreira D, Oliveira TA, Santos da Rosa JG, Gusso D, Varrone Giacomini AC, Piato AL, Barcellos LJG. 2016. Diazepam and Fluoxetine decrease the stress response in zebrafish. PLUS ONE, 9/7: 1–5.
  • Aebi H. 1974. Catalase in vitro in: Methods of enzymatic analysis. Edited by H U Bergmeyer (2nd ed, FL) 121.
  • Airhart MJ, Lee DH, Wilson TD, Miller BE, Miller MN, Skalko RG. 2007. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicology and Teratology, 29: 652–664.
  • Beutler E. 1974. Glutathione in red cell metabolism: A manual of biochemical methods, 2nd ed., Grune and Stratton, NY, pp. 112–114.
  • Bradford MM. 1976. A Rapid Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72: 248–254.
  • Briggs JP. 2002. The zebrafish: a new model organism for integrative physiology. AJP Regulatory Integrative and Comparative Physiology, 282/R3–R9.
  • Chen HH, Zha JM, Yuan LL, Wang ZJ. 2015. Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea. Chemosphere, 119: 856e862.
  • Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaut R, Scott I, Beis D, Xiao T, Baier H, Jan LY. 2008. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol, 6:e109.
  • Ding J, Lu G, Li Y. 2016. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere, 148:21e31.
  • Dvornikov AV, Dewan S, Alekhina OV, Pickett FB, Tombe PP. 2014. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte. The Journal of Physiology, 592: 1949–1956.
  • Gonzalez-Rey M, Bebianno MJ. 2013. Does selective serotonin reuptake inhibitör (SSRI) fluoxetine affects mussel Mytilus galloprovincialis? Environmental Pollution, 173: 200–209.
  • Kalichaka F, Idalencio R, Rosaa JGS, Oliveiraa TA, Koakoskia G, Gussoc D, Giacominia ACV, Barcellosa HHA, Fagundes M, Piato AL, Barcellos LJG. 2016. Waterborne psychoactive drugs impair the initial development of Zebrafish. Environmental Toxicology and Pharmacology, 41: 89–94.
  • Kayhan FE, Süsleyici B, Kaymak G, Koldemir Gündüz M, Tartar Ş, Esmer HE, Akbulut C, Çevik M, Yön Ertuğ ND. 2017. The sublethal disrupting effects of fluoxetine-HCl (FLX) on catalase (CAT) activity and malondialdeyde (MDA) levels in zebrafish Danio rerio. Fresenius Environmental Bulletin, 26/6: 3768–3772.
  • Ledwozyw A, Michalak D, Stepien A, Kadziolka A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 155:275–280.
  • Mika J, Jurga AM, Starnowska J, Wasylewski M, Rojewska E, Makuch W, Kwiatkowski K, Malek N, Przewlocka B. 2015. Effects of chronic doxepin and amitriptyline administration in naive mice and in neuropathic pain mice model. Neuroscience, 294: 38–50.
  • Mishra P, Gong Z, Kelly BC. 2017. Assessing biological effects of fluoxetine in developing zebrafish embryos using gas chromatography-mass spectrometry based metabolomics. Chemosphere, 1887157e167.
  • Oliveira MR. 2016. Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicology Letters, 256: 185–191.
  • Rider SA, Tucker CS, del-Pozo J, Rose KN, MacRae CA, Bailey MA, Mullins JJ. 2012. Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae. The Journal of Physiology, 590: 1803–1809.
  • Sehring IM, Jahn C, Weidinger G. 2016. Zebrafish fin and heart: What’s special about regeneration? Current Opinion in Genetics & Development, 40: 48–56.
  • Shafik AM, Cifuentes D. 2018. Zebrafish as a Tool to Study Congenital Heart Diseases. Encyclopedia of Cardiovascular Research and Medicine, 771–778.
  • Stoyek MR, Croll RP, Smith FM. 2015. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). Journal of Comparative Neurology, 523: 1683-1700.
  • Stoyek MR, Croll RP, Smith FM. 2016. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. American Journal of Physiology-Heart and Circulatory Physiology, 311: H676–H688.
  • Stoyek RM, Jonz MG, Smith FM, Croll RP. 2017. Distribution and chronotropic effects of serotonin in the zebrafish heart. Autonomic Neuroscience: Basic and Clinical, 206: 43–50.
  • Sun G, Liu K. 2017. Developmental toxicity and cardiac effects of buthyl phthalate in zebrafish embryos. Aquatic Toxicology, 192: 165-170.
  • Wu M, Liua S, Huc L, Qub H, Pana C, Leic P, Shenb Y, Yanga M. 2017. Global transcriptomic analysis of zebrafish in response to embryonic exposure to three antidepressants, amitriptyline, fluoxetine and mianserin. Aquatic Toxicology, 192: 274–283.
  • Yang M, Qiu W, Chen J, Zhan J, Pan C, Lei X, Wu M. 2014. Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquatic Toxicology, 151: 68–76.
  • Zeng XI. 2018. Zebrafish. Encyclopedia of Cardiovascular Research and Medicine, 759–770.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section 2018-Articles
Authors

Figen Esin Batça Kayhan 0000-0001-7754-1356

Şeyma Tartar Kızılkaya This is me 0000-0001-8065-217X

Harika Eylül Esmer Duruel 0000-0002-0737-0122

Güllü Kaymak 0000-0001-6309-0208

Publication Date December 25, 2018
Acceptance Date October 23, 2018
Published in Issue Year 2018 Volume: 3 Issue: 2

Cite

APA Batça Kayhan, F. E., Tartar Kızılkaya, Ş., Esmer Duruel, H. E., Kaymak, G. (2018). Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri. Turkish Journal of Life Sciences, 3(2), 272-276.
AMA Batça Kayhan FE, Tartar Kızılkaya Ş, Esmer Duruel HE, Kaymak G. Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri. TJLS. December 2018;3(2):272-276.
Chicago Batça Kayhan, Figen Esin, Şeyma Tartar Kızılkaya, Harika Eylül Esmer Duruel, and Güllü Kaymak. “Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio Rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri”. Turkish Journal of Life Sciences 3, no. 2 (December 2018): 272-76.
EndNote Batça Kayhan FE, Tartar Kızılkaya Ş, Esmer Duruel HE, Kaymak G (December 1, 2018) Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri. Turkish Journal of Life Sciences 3 2 272–276.
IEEE F. E. Batça Kayhan, Ş. Tartar Kızılkaya, H. E. Esmer Duruel, and G. Kaymak, “Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri”, TJLS, vol. 3, no. 2, pp. 272–276, 2018.
ISNAD Batça Kayhan, Figen Esin et al. “Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio Rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri”. Turkish Journal of Life Sciences 3/2 (December 2018), 272-276.
JAMA Batça Kayhan FE, Tartar Kızılkaya Ş, Esmer Duruel HE, Kaymak G. Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri. TJLS. 2018;3:272–276.
MLA Batça Kayhan, Figen Esin et al. “Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio Rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri”. Turkish Journal of Life Sciences, vol. 3, no. 2, 2018, pp. 272-6.
Vancouver Batça Kayhan FE, Tartar Kızılkaya Ş, Esmer Duruel HE, Kaymak G. Fluoksetin-HCl’in (FLX) Zebra Balığı (Danio rerio Hamilton, 1822) Kalp Dokusu Üzerine Günlük Doza Bağlı Etkileri. TJLS. 2018;3(2):272-6.