BibTex RIS Cite

Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function

Year 2016, Volume: 4 , 16 - 25, 13.07.2016

Abstract

In this paper, we reformulate the algorithm in [7] to find an analytical expression for -cuts of the solution of the second order nonhomogeneous fuzzy initial value problem with fuzzy initial values and fuzzy forcing terms. Firstly, we apply Zadeh’s Extension Principle to fuzzify the crisp initial value problem. Then, we use the Heaviside function and obtain the analytical form of -cuts of the solution of the fuzzy initial value problem. Finally, we illustrate some examples using the proposed algorithm.

References

  • Akın, Ö., Khaniyev, T., Oruç Ö., Türkşen, I. B., An algorithm for the solution of second order fuzzy initial value problems, Expert Syst. Appl., 40(2013), 953–957.
  • Allahviranloo, T., Nejatbakhsh, Y., Shafeei, M., A note on ”Fuzzy di erential equations and the extension principle”, Journal of Information Science, 179(2009), 2049–2051.
  • Bahrami, F., Ivaz, K., Khastan, A., New results on multiple solutions for n-th order fuzzy di erential equations under generalized di erentiability, Boundary Value Problems, 2009(2009), Article ID 395714, 13 pages.
  • Banerjee, S., Mondal, S. P., Roy, T. K., First Order Linear Homogeneous Ordinary Di erential Equation in Fuzzy Environment, Int. J. Pure Appl. Sci. Technol., 14(2013), 16–26.
  • Bede, B., Gal, S., Generalizations of the di erentiability of fuzzy number valued functions with applications to fuzzy di erential equation, Fuzzy Sets and Systems, 151(2005), 581–599.
  • Bede, B., Bencsik, A., Rudas, I., First order linear fuzzy di erential equations under generalized di erentiability, Information Sciences, 177(2007), 1648–1662.
  • Buckley, J. J., Feuring, T., Fuzzy initial value problem for N-th order linear di erential equations, Fuzzy Sets and Systems, 121(2001), 247–255.
  • Byatt,W. J., Kandel, A., Fuzzy di erential equations, In Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1978.
  • Congxin, W., Shiji, S., Existence theorem to the Cauchy problem of fuzzy di erential equations under compactness-type conditions, Inf. Sci., 14(1998), 123–134.
  • Ding, Z., Kandel, A., Ma M., Existence of the solutions of fuzzy di erential equations with parameters, Inf. Sci., 99(1997), 205–217.
  • Gasilov, N., Amrahov, S. E., Fatullayev, A. G., A geometric approach to solve fuzzy linear systems of di erential equations, Applied Mathematics and Information Sciences, 5(2011), 484–499.
  • Gasilov, N., Hashimoglu, I. F., Amrahov, S. E., Fatullayev, A. G., A New Approach to Non-Homogeneous Fuzzy Initial Value Problem, CMES-Computer Modeling in Engineering & Sciences, 85(2012), 367–378.
  • Gasilov, N., Fatullayev, A. G., Amrahov, S. E., Khastan, A., A new approach to fuzzy initial value problem, Soft Computing, 18(2014), 217–225.
  • H¨ullermeier, E., An approach to modelling and simulation of uncertain dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5(1997), 117–137.
  • Kaleva, O., Fuzzy di erential equations, Fuzzy Sets and Systems, 24(1987), 301–317.
  • Oberguggenberger, M., Pittschmann, S., Di erential equations with fuzzy parameters, Mathematical and Computer Modelling of Dynamical Systems, 5(1999), 181–202.
  • Puri, M., Ralescu, D., Di erential of fuzzy functions, Journal of Mathematical Analysis and Applications, 91(1983), 552–558.
  • Seikkala, S., On the fuzzy initial value problem, Fuzzy Sets Syst., 24(1987), 319–330.
  • Zadeh, L. A., Fuzzy sets, Information and Control, 8(1965), 338–353.
  • Zarei, H, Kamyad, A. V., Heydari, A. A., Fuzzy modeling and control of HIV infection, Comput. Math. Methods Med., 2012(2012), Article ID 893474, 17 pages.
Year 2016, Volume: 4 , 16 - 25, 13.07.2016

Abstract

References

  • Akın, Ö., Khaniyev, T., Oruç Ö., Türkşen, I. B., An algorithm for the solution of second order fuzzy initial value problems, Expert Syst. Appl., 40(2013), 953–957.
  • Allahviranloo, T., Nejatbakhsh, Y., Shafeei, M., A note on ”Fuzzy di erential equations and the extension principle”, Journal of Information Science, 179(2009), 2049–2051.
  • Bahrami, F., Ivaz, K., Khastan, A., New results on multiple solutions for n-th order fuzzy di erential equations under generalized di erentiability, Boundary Value Problems, 2009(2009), Article ID 395714, 13 pages.
  • Banerjee, S., Mondal, S. P., Roy, T. K., First Order Linear Homogeneous Ordinary Di erential Equation in Fuzzy Environment, Int. J. Pure Appl. Sci. Technol., 14(2013), 16–26.
  • Bede, B., Gal, S., Generalizations of the di erentiability of fuzzy number valued functions with applications to fuzzy di erential equation, Fuzzy Sets and Systems, 151(2005), 581–599.
  • Bede, B., Bencsik, A., Rudas, I., First order linear fuzzy di erential equations under generalized di erentiability, Information Sciences, 177(2007), 1648–1662.
  • Buckley, J. J., Feuring, T., Fuzzy initial value problem for N-th order linear di erential equations, Fuzzy Sets and Systems, 121(2001), 247–255.
  • Byatt,W. J., Kandel, A., Fuzzy di erential equations, In Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1978.
  • Congxin, W., Shiji, S., Existence theorem to the Cauchy problem of fuzzy di erential equations under compactness-type conditions, Inf. Sci., 14(1998), 123–134.
  • Ding, Z., Kandel, A., Ma M., Existence of the solutions of fuzzy di erential equations with parameters, Inf. Sci., 99(1997), 205–217.
  • Gasilov, N., Amrahov, S. E., Fatullayev, A. G., A geometric approach to solve fuzzy linear systems of di erential equations, Applied Mathematics and Information Sciences, 5(2011), 484–499.
  • Gasilov, N., Hashimoglu, I. F., Amrahov, S. E., Fatullayev, A. G., A New Approach to Non-Homogeneous Fuzzy Initial Value Problem, CMES-Computer Modeling in Engineering & Sciences, 85(2012), 367–378.
  • Gasilov, N., Fatullayev, A. G., Amrahov, S. E., Khastan, A., A new approach to fuzzy initial value problem, Soft Computing, 18(2014), 217–225.
  • H¨ullermeier, E., An approach to modelling and simulation of uncertain dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5(1997), 117–137.
  • Kaleva, O., Fuzzy di erential equations, Fuzzy Sets and Systems, 24(1987), 301–317.
  • Oberguggenberger, M., Pittschmann, S., Di erential equations with fuzzy parameters, Mathematical and Computer Modelling of Dynamical Systems, 5(1999), 181–202.
  • Puri, M., Ralescu, D., Di erential of fuzzy functions, Journal of Mathematical Analysis and Applications, 91(1983), 552–558.
  • Seikkala, S., On the fuzzy initial value problem, Fuzzy Sets Syst., 24(1987), 319–330.
  • Zadeh, L. A., Fuzzy sets, Information and Control, 8(1965), 338–353.
  • Zarei, H, Kamyad, A. V., Heydari, A. A., Fuzzy modeling and control of HIV infection, Comput. Math. Methods Med., 2012(2012), Article ID 893474, 17 pages.
There are 20 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ömer Akın

Tahir Khaniyev

Selami Bayeğ This is me

Burhan Türkşen

Publication Date July 13, 2016
Published in Issue Year 2016 Volume: 4

Cite

APA Akın, Ö., Khaniyev, T., Bayeğ, S., Türkşen, B. (2016). Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function. Turkish Journal of Mathematics and Computer Science, 4, 16-25.
AMA Akın Ö, Khaniyev T, Bayeğ S, Türkşen B. Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function. TJMCS. July 2016;4:16-25.
Chicago Akın, Ömer, Tahir Khaniyev, Selami Bayeğ, and Burhan Türkşen. “Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function”. Turkish Journal of Mathematics and Computer Science 4, July (July 2016): 16-25.
EndNote Akın Ö, Khaniyev T, Bayeğ S, Türkşen B (July 1, 2016) Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function. Turkish Journal of Mathematics and Computer Science 4 16–25.
IEEE Ö. Akın, T. Khaniyev, S. Bayeğ, and B. Türkşen, “Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function”, TJMCS, vol. 4, pp. 16–25, 2016.
ISNAD Akın, Ömer et al. “Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function”. Turkish Journal of Mathematics and Computer Science 4 (July 2016), 16-25.
JAMA Akın Ö, Khaniyev T, Bayeğ S, Türkşen B. Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function. TJMCS. 2016;4:16–25.
MLA Akın, Ömer et al. “Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function”. Turkish Journal of Mathematics and Computer Science, vol. 4, 2016, pp. 16-25.
Vancouver Akın Ö, Khaniyev T, Bayeğ S, Türkşen B. Solving a Second Order Fuzzy Initial Value Problem Using The Heaviside Function. TJMCS. 2016;4:16-25.