Abstract Omega Algebra that Subsumes Tropical Min and Max Plus Algebras
Year 2019,
Volume: 11, 1 - 10, 30.12.2019
Syed Khalid Nauman
Cenap Özel
,
Hanifa Zekraoui
Abstract
In this paper abstract omega algebra is introduced and the definition is modeled in such a way that it subsumes almost all so called tropical min and max plus algebras. Concrete examples of distinct nature of these algebras are presented. As applications, symmetrized omega algebras are constructed and matrices with basic operations and some topological distances over them are defined.
References
- Giraudet, M., Leloup, G., Lucas, F., {\em First order theory of cyclically
ordered groups}, hal-00879429.
- Litvinov, G.L., {\em The Maslov dequantization, idempotent and tropical
mathematics: a brief introduction}, Journal of Mathematical Sciences, \textbf{140}(2007), 426--444.
- Maclagan, D., Sturmfels, B., Introduction to Tropical Geometry,
Graduate Studies in Mathematics, Vol 161, American Mathematical Society,
2015.
- Ozel, C., Piekosz, A., Wajch, E., Zekraoui, H., {\em The minimizing
vector theorem in symmetrized max-plus algebra}, Journal of convex analysis, \textbf{26(2)}(2019), 661--686.
- Pin, J. E., Tropical Semirings, Idempotency (Bristol, 1994), 50--69,
Publ. Newton Inst., Vol. 11, Cambridge Univ. Press, Cambridge, 1998.
- Simon, I., {\em Recognizable sets with multiplicities in the tropical
semiring}, pages 107--120 in Mathematical Foundations of Computer Science
(Carlsbad, 1988), Lecture Notes in Computer Science, Vol. 324, Springer,
Berlin, 1988.
- Swierczkowski, S., {\em On cyclically ordered groups}, Fundamenta
Mathematicae, \textbf{47}(1959) 161--166.
Year 2019,
Volume: 11, 1 - 10, 30.12.2019
Syed Khalid Nauman
Cenap Özel
,
Hanifa Zekraoui
References
- Giraudet, M., Leloup, G., Lucas, F., {\em First order theory of cyclically
ordered groups}, hal-00879429.
- Litvinov, G.L., {\em The Maslov dequantization, idempotent and tropical
mathematics: a brief introduction}, Journal of Mathematical Sciences, \textbf{140}(2007), 426--444.
- Maclagan, D., Sturmfels, B., Introduction to Tropical Geometry,
Graduate Studies in Mathematics, Vol 161, American Mathematical Society,
2015.
- Ozel, C., Piekosz, A., Wajch, E., Zekraoui, H., {\em The minimizing
vector theorem in symmetrized max-plus algebra}, Journal of convex analysis, \textbf{26(2)}(2019), 661--686.
- Pin, J. E., Tropical Semirings, Idempotency (Bristol, 1994), 50--69,
Publ. Newton Inst., Vol. 11, Cambridge Univ. Press, Cambridge, 1998.
- Simon, I., {\em Recognizable sets with multiplicities in the tropical
semiring}, pages 107--120 in Mathematical Foundations of Computer Science
(Carlsbad, 1988), Lecture Notes in Computer Science, Vol. 324, Springer,
Berlin, 1988.
- Swierczkowski, S., {\em On cyclically ordered groups}, Fundamenta
Mathematicae, \textbf{47}(1959) 161--166.