Bi-Periodic Balancing Quaternions
Year 2020,
Volume: 12 Issue: 2, 68 - 75, 31.12.2020
Emre Sevgi
,
Dursun Taşçı
Abstract
In this paper, we first define the bi-periodic balancing numbers and quaternions. We give the generating function
and Binet formula for this quaternion. Then, we obtain some identities and properties including this quaternion.
References
- Behera, A., Panda, G.K., {\em On the square roots of triangular numbers}, Fibonacci Quarterly, \textbf{37(2)}(1999), 98--105.
- Edson, M., Yayenie, O., {\em A new generalization of Fibonacci sequences and extended Binet's formula}, Integers, \textbf{9(6)}(2009), 639--654.
- Hal\i c\i , S., {\em On Fibonacci quaternions}, Advances in Applied Clifford Algebras, \textbf{22(2)}(2012), 321--327.
- Hamilton, W.R., Lectures on quaternions, Dublin, 1853.
- Horadam, A.F., {\em Complex Fibonacci numbers and Fibonacci quaternions}, The American Mathematical Monthly, \textbf{70(3)}(1963), 289--291.
- Iyer, M.R., {\em Some results on Fibonacci quaternions}, Fibonacci Quarterly, \textbf{7(2)}(1969), 201--210.
- Jordan, J.H., {\em Gaussian Fibonacci and Lucas numbers}, Fibonacci Quarterly, \textbf{3}(1965), 315--318.
- Koshy, T., Fibonacci and Lucas numbers with applications, Wiley, New York, 2001.
- Ozkan K\i z\i l\i rmak, G., Tasc\i , D., {\em Expression of reciprocal sum of Gaussian Lucas sequences by Lambert series,} Journal of Science and Arts, \textbf{48(3)}(2019), 587--592.
- Tan, E., Y\i lmaz, S., Sahin, M., {\em A note on bi-periodic Fibonacci and Lucas quaternions}, Chaos, Solitions and Fractals, \textbf{85}(2016), 138--142.
- Tasc\i , D., Ozkan K\i z\i l\i rmak, G., {\em On the periods of bi-periodic Fibonacci and bi-periodic Lucas numbers}, Discrete Dynamics in Nature and Society, (2016), 1--5.
Year 2020,
Volume: 12 Issue: 2, 68 - 75, 31.12.2020
Emre Sevgi
,
Dursun Taşçı
References
- Behera, A., Panda, G.K., {\em On the square roots of triangular numbers}, Fibonacci Quarterly, \textbf{37(2)}(1999), 98--105.
- Edson, M., Yayenie, O., {\em A new generalization of Fibonacci sequences and extended Binet's formula}, Integers, \textbf{9(6)}(2009), 639--654.
- Hal\i c\i , S., {\em On Fibonacci quaternions}, Advances in Applied Clifford Algebras, \textbf{22(2)}(2012), 321--327.
- Hamilton, W.R., Lectures on quaternions, Dublin, 1853.
- Horadam, A.F., {\em Complex Fibonacci numbers and Fibonacci quaternions}, The American Mathematical Monthly, \textbf{70(3)}(1963), 289--291.
- Iyer, M.R., {\em Some results on Fibonacci quaternions}, Fibonacci Quarterly, \textbf{7(2)}(1969), 201--210.
- Jordan, J.H., {\em Gaussian Fibonacci and Lucas numbers}, Fibonacci Quarterly, \textbf{3}(1965), 315--318.
- Koshy, T., Fibonacci and Lucas numbers with applications, Wiley, New York, 2001.
- Ozkan K\i z\i l\i rmak, G., Tasc\i , D., {\em Expression of reciprocal sum of Gaussian Lucas sequences by Lambert series,} Journal of Science and Arts, \textbf{48(3)}(2019), 587--592.
- Tan, E., Y\i lmaz, S., Sahin, M., {\em A note on bi-periodic Fibonacci and Lucas quaternions}, Chaos, Solitions and Fractals, \textbf{85}(2016), 138--142.
- Tasc\i , D., Ozkan K\i z\i l\i rmak, G., {\em On the periods of bi-periodic Fibonacci and bi-periodic Lucas numbers}, Discrete Dynamics in Nature and Society, (2016), 1--5.