Research Article
BibTex RIS Cite
Year 2021, Volume: 13 Issue: 1, 211 - 220, 30.06.2021

Abstract

References

  • [1] Acu, A.M., Agrawal, P.N., Neer, T., Approximation properties of the modified Stancu operators, Numerical Functional Analysis and Optimization, 38(2017), 279–292.
  • [2] Altomare, F., Campiti, M., Korovkin-type Approximation Theory and Its Applications, Walter de Gruyter, 1962.
  • [3] Aslan, R., İzgi, A., Some approximation results on modified q-Bernstein operators, Journal of Mathematical Analysis, 11(1)(2020), 58–70.
  • [4] Bernstein, S.N., Demonstration du theoreme de Weierstrass fondee sur la calcul des probabilities, Comm. Soc. Math., 2(1912), 1–2.
  • [5] Chen, X., Tan, J., Liu, Z.,Xie, J., Approximation of functions by a new family of generalized Bernstein operators, Journal of Mathematical Analysis and Applications, 450(2017), 244–261.
  • [6] Deo, N.,Noor M.A.,Siddiqui M.A., On approximation by a class of new Bernstein type operators, Applied mathematics and computation, 201(2008), 604–612.
  • [7] Izgı, A., Approximation by a class of new type Bernstein polynomials of one and two variables, Global Journal of Pure and Applied Mathematics, 8(2012), 55–71.
  • [8] Jafari, H.,Tajadodi, H., Ganji, R.M., A numerical approach for solving variable order di erential equations based on Bernstein polynomials, Computational and Mathematical Methods, 5(2019), e1055.
  • [9] Jiang, B., Yu, D., On approximation by Stancu type Bernstein–Schurer polynomials in compact disks, Results in Mathematics, 72(2017), 1623–1638.
  • [10] Karahan, D., İzgi, A., On approximation properties of (p, q)-Bernstein operators, European Journal of Pure and Applied Mathematics, 11(2018), 457–467.
  • [11] Korovkin, P.P., On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 90(1953), 961–964.
  • [12] Lorentz, G.G., Bernstein Polynomials, American Mathematical Soc., New York, 2013.
  • [13] Mursaleen, M., Ansari, K., Khan,A., On (p, q)-analogue of Bernstein operators, Applied Mathematics and Computation, 266(2015), 874–882.
  • [14] Phillips, G.M., Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics, 4(1997), 511–518.
  • [15] Schurer, F., Linear Positive Operators in Approximation Theory, Math. Inst., Techn. Univ. Delf Report, Delft, 1962.
  • [16] Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl, 13(1968), 1173– 1194.
  • [17] Weierstrass, K., Über die analytische Darstellbarkeit sogenannter willku¨rlicher Functionen einer reellen Veranderlichen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 2(1885), 633–639.

A New Generalization of Bernstein Polynomials

Year 2021, Volume: 13 Issue: 1, 211 - 220, 30.06.2021

Abstract

We will hereby introduce a new generalization of the Schurer, Stancu, Deo, and Izgi operators which are the modifications of the Bernstein polynomials and calculate the rate of approximation for the new operator with the help of the continuity module. Then, by using graphs and numerical values, we will demonstrate that the new general operator yields better results than the above classical operators which can be seen as the basis of the approximation theory.

References

  • [1] Acu, A.M., Agrawal, P.N., Neer, T., Approximation properties of the modified Stancu operators, Numerical Functional Analysis and Optimization, 38(2017), 279–292.
  • [2] Altomare, F., Campiti, M., Korovkin-type Approximation Theory and Its Applications, Walter de Gruyter, 1962.
  • [3] Aslan, R., İzgi, A., Some approximation results on modified q-Bernstein operators, Journal of Mathematical Analysis, 11(1)(2020), 58–70.
  • [4] Bernstein, S.N., Demonstration du theoreme de Weierstrass fondee sur la calcul des probabilities, Comm. Soc. Math., 2(1912), 1–2.
  • [5] Chen, X., Tan, J., Liu, Z.,Xie, J., Approximation of functions by a new family of generalized Bernstein operators, Journal of Mathematical Analysis and Applications, 450(2017), 244–261.
  • [6] Deo, N.,Noor M.A.,Siddiqui M.A., On approximation by a class of new Bernstein type operators, Applied mathematics and computation, 201(2008), 604–612.
  • [7] Izgı, A., Approximation by a class of new type Bernstein polynomials of one and two variables, Global Journal of Pure and Applied Mathematics, 8(2012), 55–71.
  • [8] Jafari, H.,Tajadodi, H., Ganji, R.M., A numerical approach for solving variable order di erential equations based on Bernstein polynomials, Computational and Mathematical Methods, 5(2019), e1055.
  • [9] Jiang, B., Yu, D., On approximation by Stancu type Bernstein–Schurer polynomials in compact disks, Results in Mathematics, 72(2017), 1623–1638.
  • [10] Karahan, D., İzgi, A., On approximation properties of (p, q)-Bernstein operators, European Journal of Pure and Applied Mathematics, 11(2018), 457–467.
  • [11] Korovkin, P.P., On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 90(1953), 961–964.
  • [12] Lorentz, G.G., Bernstein Polynomials, American Mathematical Soc., New York, 2013.
  • [13] Mursaleen, M., Ansari, K., Khan,A., On (p, q)-analogue of Bernstein operators, Applied Mathematics and Computation, 266(2015), 874–882.
  • [14] Phillips, G.M., Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics, 4(1997), 511–518.
  • [15] Schurer, F., Linear Positive Operators in Approximation Theory, Math. Inst., Techn. Univ. Delf Report, Delft, 1962.
  • [16] Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl, 13(1968), 1173– 1194.
  • [17] Weierstrass, K., Über die analytische Darstellbarkeit sogenannter willku¨rlicher Functionen einer reellen Veranderlichen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 2(1885), 633–639.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Harun Çiçek 0000-0003-3018-3015

Aydın İzgi 0000-0003-3715-8621

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Çiçek, H., & İzgi, A. (2021). A New Generalization of Bernstein Polynomials. Turkish Journal of Mathematics and Computer Science, 13(1), 211-220. https://doi.org/10.47000/tjmcs.853544
AMA Çiçek H, İzgi A. A New Generalization of Bernstein Polynomials. TJMCS. June 2021;13(1):211-220. doi:10.47000/tjmcs.853544
Chicago Çiçek, Harun, and Aydın İzgi. “A New Generalization of Bernstein Polynomials”. Turkish Journal of Mathematics and Computer Science 13, no. 1 (June 2021): 211-20. https://doi.org/10.47000/tjmcs.853544.
EndNote Çiçek H, İzgi A (June 1, 2021) A New Generalization of Bernstein Polynomials. Turkish Journal of Mathematics and Computer Science 13 1 211–220.
IEEE H. Çiçek and A. İzgi, “A New Generalization of Bernstein Polynomials”, TJMCS, vol. 13, no. 1, pp. 211–220, 2021, doi: 10.47000/tjmcs.853544.
ISNAD Çiçek, Harun - İzgi, Aydın. “A New Generalization of Bernstein Polynomials”. Turkish Journal of Mathematics and Computer Science 13/1 (June 2021), 211-220. https://doi.org/10.47000/tjmcs.853544.
JAMA Çiçek H, İzgi A. A New Generalization of Bernstein Polynomials. TJMCS. 2021;13:211–220.
MLA Çiçek, Harun and Aydın İzgi. “A New Generalization of Bernstein Polynomials”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 1, 2021, pp. 211-20, doi:10.47000/tjmcs.853544.
Vancouver Çiçek H, İzgi A. A New Generalization of Bernstein Polynomials. TJMCS. 2021;13(1):211-20.