Research Article
BibTex RIS Cite
Year 2021, Volume: 13 Issue: 1, 204 - 210, 30.06.2021

Abstract

References

  • [1] Banach, S., Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3(1922), 133-181.
  • [2] Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19(1)(2003), 7-22.
  • [3] Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9(1)(2004), 43-53.
  • [4] Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag, Berlin Heidelberg, 2007.
  • [5] Ciric, L.B., Presic, S.B., On Presic type generalization of the Banach contraction mapping principle, Acta Math Univ Comenianae, 76(2007), 143-147.
  • [6] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly, 83(4)(1976), 261-263.
  • [7] Nazır, T., Abbas, M., Common fixed point of Presic type contraction mappings in partial metric spaces, Journal of Nonlinear Analysis and Optimization, 5(2013), 49-55.
  • [8] Pacular, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (1)(2012), 117-126.
  • [9] Presic, S.B., Sur une classe di’n equations aux di erence finite et. sur la convergence de certains suites, Publ de L’Inst Math., 5(1965), 75-78.
  • [10] Rao, K.P.R., Mustaq Ali, Md., Fisher, B., Some Presic Type Generalizations of the Banach Contraction Principle, Mathematica Moravica, 15(1)(2011), 41-47.
  • [11] Shukla, S., Sen, R., Radenovisc, S., Set-Valued Presic type contraction in metric spaces, Annals of the ”Alexandru Ioan Cuza” University of Iasi (New Series). Mathematics, 61(2)(2015), 391-399.
  • [12] Shukla, S., Set-Valued Presic-Chatterjea Type Contractions and Fixed Point Theorems, Gazi University Journal of Science, 29(2)(2016), 473- 478.

Presic Type Operators for a Pair Mappings

Year 2021, Volume: 13 Issue: 1, 204 - 210, 30.06.2021

Abstract

In this study, we extended the Presic type contraction mapping using $(\delta, L)$-weak contractive. We investigate Presic type weak contraction mapping and obtain some fixed point results in Presic type weak (almost) contraction mappings for a pair of mappings using Jungck type mappings. Additionally, we establish an example to show that the new results are applicable.

References

  • [1] Banach, S., Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3(1922), 133-181.
  • [2] Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19(1)(2003), 7-22.
  • [3] Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9(1)(2004), 43-53.
  • [4] Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag, Berlin Heidelberg, 2007.
  • [5] Ciric, L.B., Presic, S.B., On Presic type generalization of the Banach contraction mapping principle, Acta Math Univ Comenianae, 76(2007), 143-147.
  • [6] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly, 83(4)(1976), 261-263.
  • [7] Nazır, T., Abbas, M., Common fixed point of Presic type contraction mappings in partial metric spaces, Journal of Nonlinear Analysis and Optimization, 5(2013), 49-55.
  • [8] Pacular, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (1)(2012), 117-126.
  • [9] Presic, S.B., Sur une classe di’n equations aux di erence finite et. sur la convergence de certains suites, Publ de L’Inst Math., 5(1965), 75-78.
  • [10] Rao, K.P.R., Mustaq Ali, Md., Fisher, B., Some Presic Type Generalizations of the Banach Contraction Principle, Mathematica Moravica, 15(1)(2011), 41-47.
  • [11] Shukla, S., Sen, R., Radenovisc, S., Set-Valued Presic type contraction in metric spaces, Annals of the ”Alexandru Ioan Cuza” University of Iasi (New Series). Mathematics, 61(2)(2015), 391-399.
  • [12] Shukla, S., Set-Valued Presic-Chatterjea Type Contractions and Fixed Point Theorems, Gazi University Journal of Science, 29(2)(2016), 473- 478.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Seher Sultan Yeşilkaya 0000-0002-1748-2398

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Yeşilkaya, S. S. (2021). Presic Type Operators for a Pair Mappings. Turkish Journal of Mathematics and Computer Science, 13(1), 204-210. https://doi.org/10.47000/tjmcs.866357
AMA Yeşilkaya SS. Presic Type Operators for a Pair Mappings. TJMCS. June 2021;13(1):204-210. doi:10.47000/tjmcs.866357
Chicago Yeşilkaya, Seher Sultan. “Presic Type Operators for a Pair Mappings”. Turkish Journal of Mathematics and Computer Science 13, no. 1 (June 2021): 204-10. https://doi.org/10.47000/tjmcs.866357.
EndNote Yeşilkaya SS (June 1, 2021) Presic Type Operators for a Pair Mappings. Turkish Journal of Mathematics and Computer Science 13 1 204–210.
IEEE S. S. Yeşilkaya, “Presic Type Operators for a Pair Mappings”, TJMCS, vol. 13, no. 1, pp. 204–210, 2021, doi: 10.47000/tjmcs.866357.
ISNAD Yeşilkaya, Seher Sultan. “Presic Type Operators for a Pair Mappings”. Turkish Journal of Mathematics and Computer Science 13/1 (June 2021), 204-210. https://doi.org/10.47000/tjmcs.866357.
JAMA Yeşilkaya SS. Presic Type Operators for a Pair Mappings. TJMCS. 2021;13:204–210.
MLA Yeşilkaya, Seher Sultan. “Presic Type Operators for a Pair Mappings”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 1, 2021, pp. 204-10, doi:10.47000/tjmcs.866357.
Vancouver Yeşilkaya SS. Presic Type Operators for a Pair Mappings. TJMCS. 2021;13(1):204-10.