Research Article
BibTex RIS Cite
Year 2023, Volume: 15 Issue: 1, 12 - 19, 30.06.2023
https://doi.org/10.47000/tjmcs.1110240

Abstract

References

  • Adati, T., Submanifolds of an almost product Riemannian manifold, Kodai Math. J., 4(2)(1981), 327–343.
  • Bejancu, A., Geometry of CR Submanifolds, D. Reidel Publishing Company, Dordrecht, 1986.
  • Blaga, A.M., The geometry of golden conjugate connections, Sarajevo J. Math., 10(23)(2014), 237–245.
  • Blaga, A.M., Hretcanu, C.E., Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold, Novi Sad J. Math., 48(2)(2018), 55–80.
  • Blaga, A.M., Hretcanu, C.E., Metallic conjugate connections, Rev. Un. Mat. Argentina, 59(1)(2018), 179–192.
  • Craşmareanu, M.C., Hretcanu, C.E., Golden differential geometry, Chaos Solitons Fractals, 38(5)(2008), 1229–1238.
  • Erdoğan, F.E., Yıldırım, C., On a study of the totally umbilical semi-invariant submanifolds of golden Riemannian manifolds, J. Polytechnic, 21(4)(2018), 967–970.
  • Gezer, A., Karaman, Ç, On metallic Riemannian structures, Turk. J. Math., 3(6)(2015), 954–962.
  • Gök, M., Keleş, S., Kılıç, E., Invariant submanifolds in golden Riemannian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2)(2020), 125–138.
  • Gök, M., Kılıç, E., Totally umbilical semi-invariant submanifolds in locally decomposable metallic Riemannian manifolds, Filomat, 36(8)(2022), 2675–2686.
  • Hretcanu, C.E., Induced structures on spheres and product of spheres, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 54(1)(2008), 39–50.
  • Hretcanu, C.E., Blaga, A.M., Submanifolds in metallic Riemannian manifolds, Differ. Geom. Dyn. Syst., 20(2018), 83–97.
  • Hretcanu, C.E., Blaga, A.M., Slant and semi-slant submanifolds in metallic Riemannian manifolds, J. Funct. Spaces, 2018(2018), Article ID 2864263, 13 pages.
  • Hretcanu, C.E., Blaga, A.M., Hemi-slant submanifolds in metallic Riemannian manifolds, Carpathian J. Math., 35(1)(2019), 59–68.
  • Hretcanu, C.E., Craşmareanu, M.C., On some invariant submanifolds in a Riemannian manifold with golden structure, An. S¸ tiint¸. Univ. Al. I. Cuza Ias¸i. Mat. (N.S.), 53(suppl. 1)(2007), 199–211.
  • Hretcanu, C.E., Craşmareanu, M.C., Applications of the golden ratio on Riemannian manifolds, Turk. J. Math., 33(2)(2009), 179–191.
  • Hretcanu, C.E., Craşmareanu, M.C., Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54(2)(2013), 15–27.
  • Kalia, S., The generalizations of the golden ratio: their powers, continued fractions, and convergents, MIT Mathematics, http://math.mit.edu/research/highschool/primes/papers.php (2011).
  • Özkan, M., Yılmaz, F., Metallic structures on differentiable manifolds, J. Sci. Arts, 3(44)(2018), 645–660.
  • Perktaş, S.Y., Submanifolds of almost poly-Norden Riemannian manifolds, Turk. J. Math., 44(1)(2020), 31–49.
  • Şahin, B., Almost poly-Norden manifolds, Int. J. Maps Math., 1(1)(2018), 68–79.
  • Yano, K., Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.

A Note on Invariant Submanifolds of Metallic Riemannian Manifolds

Year 2023, Volume: 15 Issue: 1, 12 - 19, 30.06.2023
https://doi.org/10.47000/tjmcs.1110240

Abstract

The goal of this paper is to examine invariant submanifolds in metallic Riemannian manifolds with the help of induced structures on them by the metallic Riemannian structure of the ambient manifold. We obtain a useful characterization of invariant submanifolds. Wealso discuss some necessary conditions for invariant submanifolds to be totally geodesic. Finally, we provide an example of an invariant submanifold.

References

  • Adati, T., Submanifolds of an almost product Riemannian manifold, Kodai Math. J., 4(2)(1981), 327–343.
  • Bejancu, A., Geometry of CR Submanifolds, D. Reidel Publishing Company, Dordrecht, 1986.
  • Blaga, A.M., The geometry of golden conjugate connections, Sarajevo J. Math., 10(23)(2014), 237–245.
  • Blaga, A.M., Hretcanu, C.E., Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold, Novi Sad J. Math., 48(2)(2018), 55–80.
  • Blaga, A.M., Hretcanu, C.E., Metallic conjugate connections, Rev. Un. Mat. Argentina, 59(1)(2018), 179–192.
  • Craşmareanu, M.C., Hretcanu, C.E., Golden differential geometry, Chaos Solitons Fractals, 38(5)(2008), 1229–1238.
  • Erdoğan, F.E., Yıldırım, C., On a study of the totally umbilical semi-invariant submanifolds of golden Riemannian manifolds, J. Polytechnic, 21(4)(2018), 967–970.
  • Gezer, A., Karaman, Ç, On metallic Riemannian structures, Turk. J. Math., 3(6)(2015), 954–962.
  • Gök, M., Keleş, S., Kılıç, E., Invariant submanifolds in golden Riemannian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2)(2020), 125–138.
  • Gök, M., Kılıç, E., Totally umbilical semi-invariant submanifolds in locally decomposable metallic Riemannian manifolds, Filomat, 36(8)(2022), 2675–2686.
  • Hretcanu, C.E., Induced structures on spheres and product of spheres, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 54(1)(2008), 39–50.
  • Hretcanu, C.E., Blaga, A.M., Submanifolds in metallic Riemannian manifolds, Differ. Geom. Dyn. Syst., 20(2018), 83–97.
  • Hretcanu, C.E., Blaga, A.M., Slant and semi-slant submanifolds in metallic Riemannian manifolds, J. Funct. Spaces, 2018(2018), Article ID 2864263, 13 pages.
  • Hretcanu, C.E., Blaga, A.M., Hemi-slant submanifolds in metallic Riemannian manifolds, Carpathian J. Math., 35(1)(2019), 59–68.
  • Hretcanu, C.E., Craşmareanu, M.C., On some invariant submanifolds in a Riemannian manifold with golden structure, An. S¸ tiint¸. Univ. Al. I. Cuza Ias¸i. Mat. (N.S.), 53(suppl. 1)(2007), 199–211.
  • Hretcanu, C.E., Craşmareanu, M.C., Applications of the golden ratio on Riemannian manifolds, Turk. J. Math., 33(2)(2009), 179–191.
  • Hretcanu, C.E., Craşmareanu, M.C., Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54(2)(2013), 15–27.
  • Kalia, S., The generalizations of the golden ratio: their powers, continued fractions, and convergents, MIT Mathematics, http://math.mit.edu/research/highschool/primes/papers.php (2011).
  • Özkan, M., Yılmaz, F., Metallic structures on differentiable manifolds, J. Sci. Arts, 3(44)(2018), 645–660.
  • Perktaş, S.Y., Submanifolds of almost poly-Norden Riemannian manifolds, Turk. J. Math., 44(1)(2020), 31–49.
  • Şahin, B., Almost poly-Norden manifolds, Int. J. Maps Math., 1(1)(2018), 68–79.
  • Yano, K., Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mustafa Gök 0000-0001-6346-0758

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Gök, M. (2023). A Note on Invariant Submanifolds of Metallic Riemannian Manifolds. Turkish Journal of Mathematics and Computer Science, 15(1), 12-19. https://doi.org/10.47000/tjmcs.1110240
AMA Gök M. A Note on Invariant Submanifolds of Metallic Riemannian Manifolds. TJMCS. June 2023;15(1):12-19. doi:10.47000/tjmcs.1110240
Chicago Gök, Mustafa. “A Note on Invariant Submanifolds of Metallic Riemannian Manifolds”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 12-19. https://doi.org/10.47000/tjmcs.1110240.
EndNote Gök M (June 1, 2023) A Note on Invariant Submanifolds of Metallic Riemannian Manifolds. Turkish Journal of Mathematics and Computer Science 15 1 12–19.
IEEE M. Gök, “A Note on Invariant Submanifolds of Metallic Riemannian Manifolds”, TJMCS, vol. 15, no. 1, pp. 12–19, 2023, doi: 10.47000/tjmcs.1110240.
ISNAD Gök, Mustafa. “A Note on Invariant Submanifolds of Metallic Riemannian Manifolds”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 12-19. https://doi.org/10.47000/tjmcs.1110240.
JAMA Gök M. A Note on Invariant Submanifolds of Metallic Riemannian Manifolds. TJMCS. 2023;15:12–19.
MLA Gök, Mustafa. “A Note on Invariant Submanifolds of Metallic Riemannian Manifolds”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 12-19, doi:10.47000/tjmcs.1110240.
Vancouver Gök M. A Note on Invariant Submanifolds of Metallic Riemannian Manifolds. TJMCS. 2023;15(1):12-9.