Research Article
BibTex RIS Cite

An investigation of energetic particles in the magnetically confined fusion plasma

Year 2024, Volume: 37 Issue: 1, 7 - 14, 12.07.2024

Abstract

The investigation of energetic particles in magnetically confined plasma is a critical area of research in the field of controlled thermonuclear fusion, with implications for the development of fusion reactors such as tokamaks and stellarators. This study focuses on understanding the behavior of energetic particles, such as alpha particles produced in fusion reactions, and their interactions with the magnetic fields and plasma waves within the confinement devices. The main objectives are to analyze the mechanisms of particle heating, confinement, and the potential instabilities induced by the energetic particles.The study also explores the implications of these interactions for the stability of magnetically confined plasma.It further examines the conditions under which energetic particles can excite instabilities, such as Alfvén eigenmodes, leading to enhanced particle losses and potentially compromising the efficiency of fusion reactors.

References

  • Hirsch R and Rice W. (1974).Nuclear Fusion Power andthe Environment.Environ. Conserv.1,4:251–262 .
  • Huang C and Li L. (2018).Magnetic confinement fusion:a brief review.Front. Energy.12(2)305-313. https://doi. org/10.1007/s11708-018-0539-1.
  • Wang Z (2023).Current status of research on magnetic confinement fusion and superconducting tokamak devices. Procedia Comput.Sci.228,C:163-170 .
  • Pinches S , Berk H , Borba D , Breizman B , Briguglio S , Fasoli A et al.(2004).The role of energetic particles in fusion plasmas. Plasma Phys. Control. Fusion.46,12B:B187-B200. https:// doi. org/10.1088/0741-3335/46/12B/017.
  • Heidbrink W and Sager G. (1990).The fishbone instability in the DIII-D tokamak.Nucl. Fusion.30,6:1015-1025. https://doi.org/10.1088/0029-5515/30/6/004.
  • Todo Y.(2019).Introduction to the interaction between energetic particles and Alfven eigenmodes in toroidal plasmas.Rev. Mod. Plasma Phys.3(1):1-33. https://doi. org/10.1007/s41614-018-0022-9.
  • Li Y,Falessi M,Lauber P,Li Y,Qiu Z,Wei G et al.(2023). Physics of drift Alfvén instabilities and energetic particles in fusion plasmas.Plasma Phys. Control. Fusion.65,(8):1-18 . https://doi.org/ 10.1088/1361-6587/ acda5e.
  • Appert K,Gruber R,Troyuon F and Vaclavik J. (1982). Excitation of global eigenmodes of the Alfven wave in Tokamaks.Plasma Phys.24(,9):1147-1159 . https://doi. org/ 10.1088/0032-1028/24/9/010.
  • Marchenko V,Kolesnichenko Y and Reznik S. (2009). Low-frequency global Alfvén eigenmodes in lowshear tokamaks with trapped energetic ions. Phys. Plasmas.16,(9):1-4. https://doi.org/10.1063/1.3195072.
  • Ma R,Chen L,Zonca F,Li Y and Qiu Z. (2022).Theoretical studies of low-frequency Alfvén modes in tokamak plasmas.Plasma Phys. Control. Fusion.64,(3):1-11. https://doi.org/10.1088/1361-6587/ac434a.
  • Tolman E,Loureiro N,Rodrigues P,Hughes J and Marmar E. ( 2019).Dependence of alpha-particle-driven Alfvén eigenmode linear stability on device magnetic field strength and consequences fornext-generation tokamaks. Nucl.Fusion 59, (4) : 1 -20. https://doi.org/ 10.1088/1741-4326/ab058f.
  • Bernstein I and Ahearne J .(1968).On the kinetic theory of plasmas.Ann. Phys.49,1:1-38 .
  • Sestero A. (1966). Vlasov Equation Study of Plasma Motion across Magnetic Fields.Phys. Fluids.9,(10):2006-2013.
  • Burby J (2017). Magnetohydrodynamic motion of a twofluid plasma. Phys. Plasmas.24,(8): 082104-1- 082104- 13 . https://doi.org/10.1063/1.4994068.
  • Mc Clements K and Fredrickson E. (2017). Energetic particles in spherical tokamak plasmas.Plasma Phys. Control. Fusion.59,(5):1-43.https://doi. org/10.1088/1361-6587/aa626e.
  • Blokland J and Pinches S (2011).Interaction between fast particles and magnetohydrodynamic waves in stationary plasmas. Plasma Phys. Control. Fusion.53,10:1-19. https://doi.org/10.1088/0741-3335/53/10/105009.
  • Cai H and Li D (2022).Recent progress in the interaction between energetic particles and tearing modes. Natl. Sci. Rev.9,11:1-22 . https://doi.org/10.1093/nsr/ nwac019.
  • Chen L and Zonca F (2016).Physics of Alfvén waves and energetic particles in burning plasmas.Rev. Mod. Phys.88,(1):1-92.
  • Gershman D,Viñas A,Dorelli J,Boardsen S,Avanov L,Bellan P et al.(2017).Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.Nat. Commun.8,(14719):1-10 . https://doi.org/10.1038/ ncomms14719.
  • Gorelenkov N (2012).Excitation of Alfvén modes by energetic particles in magnetic fusion.AIP Conf. Proc.1478,(1):7-22. https://doi.org/10.1063/1.4751636.
  • Heidbrink W. (2008). Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas.15,(5:055501-1:055501)-15. https://doi.org/10.1063/1.2838239.
  • Sharapov S , Alper B , Berk H , Borba D , Breizman B , Challis C et al. (2013). Energetic particle instabilities in fusion plasmas. Nucl. Fusion. 53,(10):1-11. https://doi. org/ 10.1088/0029-5515/53/10/104022.
  • Zarzoso D and Negrete D (2020). Anomalous losses of energetic particles in the presence of an oscillating radial electric field in fusion plasmas.J. Plasma Phys.86,(2):1- 17 . https://doi.org/ 10.1017/S002237782000029X.
  • Siena A,Navarro A and Jenko F(2020).Turbulence suppression by energetic particle effects in modern optimized stellarators. Phys. Rev. Lett.125,10:1-5. https://doi.org/ 10.1103/PhysRevLett.125.105002
Year 2024, Volume: 37 Issue: 1, 7 - 14, 12.07.2024

Abstract

References

  • Hirsch R and Rice W. (1974).Nuclear Fusion Power andthe Environment.Environ. Conserv.1,4:251–262 .
  • Huang C and Li L. (2018).Magnetic confinement fusion:a brief review.Front. Energy.12(2)305-313. https://doi. org/10.1007/s11708-018-0539-1.
  • Wang Z (2023).Current status of research on magnetic confinement fusion and superconducting tokamak devices. Procedia Comput.Sci.228,C:163-170 .
  • Pinches S , Berk H , Borba D , Breizman B , Briguglio S , Fasoli A et al.(2004).The role of energetic particles in fusion plasmas. Plasma Phys. Control. Fusion.46,12B:B187-B200. https:// doi. org/10.1088/0741-3335/46/12B/017.
  • Heidbrink W and Sager G. (1990).The fishbone instability in the DIII-D tokamak.Nucl. Fusion.30,6:1015-1025. https://doi.org/10.1088/0029-5515/30/6/004.
  • Todo Y.(2019).Introduction to the interaction between energetic particles and Alfven eigenmodes in toroidal plasmas.Rev. Mod. Plasma Phys.3(1):1-33. https://doi. org/10.1007/s41614-018-0022-9.
  • Li Y,Falessi M,Lauber P,Li Y,Qiu Z,Wei G et al.(2023). Physics of drift Alfvén instabilities and energetic particles in fusion plasmas.Plasma Phys. Control. Fusion.65,(8):1-18 . https://doi.org/ 10.1088/1361-6587/ acda5e.
  • Appert K,Gruber R,Troyuon F and Vaclavik J. (1982). Excitation of global eigenmodes of the Alfven wave in Tokamaks.Plasma Phys.24(,9):1147-1159 . https://doi. org/ 10.1088/0032-1028/24/9/010.
  • Marchenko V,Kolesnichenko Y and Reznik S. (2009). Low-frequency global Alfvén eigenmodes in lowshear tokamaks with trapped energetic ions. Phys. Plasmas.16,(9):1-4. https://doi.org/10.1063/1.3195072.
  • Ma R,Chen L,Zonca F,Li Y and Qiu Z. (2022).Theoretical studies of low-frequency Alfvén modes in tokamak plasmas.Plasma Phys. Control. Fusion.64,(3):1-11. https://doi.org/10.1088/1361-6587/ac434a.
  • Tolman E,Loureiro N,Rodrigues P,Hughes J and Marmar E. ( 2019).Dependence of alpha-particle-driven Alfvén eigenmode linear stability on device magnetic field strength and consequences fornext-generation tokamaks. Nucl.Fusion 59, (4) : 1 -20. https://doi.org/ 10.1088/1741-4326/ab058f.
  • Bernstein I and Ahearne J .(1968).On the kinetic theory of plasmas.Ann. Phys.49,1:1-38 .
  • Sestero A. (1966). Vlasov Equation Study of Plasma Motion across Magnetic Fields.Phys. Fluids.9,(10):2006-2013.
  • Burby J (2017). Magnetohydrodynamic motion of a twofluid plasma. Phys. Plasmas.24,(8): 082104-1- 082104- 13 . https://doi.org/10.1063/1.4994068.
  • Mc Clements K and Fredrickson E. (2017). Energetic particles in spherical tokamak plasmas.Plasma Phys. Control. Fusion.59,(5):1-43.https://doi. org/10.1088/1361-6587/aa626e.
  • Blokland J and Pinches S (2011).Interaction between fast particles and magnetohydrodynamic waves in stationary plasmas. Plasma Phys. Control. Fusion.53,10:1-19. https://doi.org/10.1088/0741-3335/53/10/105009.
  • Cai H and Li D (2022).Recent progress in the interaction between energetic particles and tearing modes. Natl. Sci. Rev.9,11:1-22 . https://doi.org/10.1093/nsr/ nwac019.
  • Chen L and Zonca F (2016).Physics of Alfvén waves and energetic particles in burning plasmas.Rev. Mod. Phys.88,(1):1-92.
  • Gershman D,Viñas A,Dorelli J,Boardsen S,Avanov L,Bellan P et al.(2017).Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.Nat. Commun.8,(14719):1-10 . https://doi.org/10.1038/ ncomms14719.
  • Gorelenkov N (2012).Excitation of Alfvén modes by energetic particles in magnetic fusion.AIP Conf. Proc.1478,(1):7-22. https://doi.org/10.1063/1.4751636.
  • Heidbrink W. (2008). Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas.15,(5:055501-1:055501)-15. https://doi.org/10.1063/1.2838239.
  • Sharapov S , Alper B , Berk H , Borba D , Breizman B , Challis C et al. (2013). Energetic particle instabilities in fusion plasmas. Nucl. Fusion. 53,(10):1-11. https://doi. org/ 10.1088/0029-5515/53/10/104022.
  • Zarzoso D and Negrete D (2020). Anomalous losses of energetic particles in the presence of an oscillating radial electric field in fusion plasmas.J. Plasma Phys.86,(2):1- 17 . https://doi.org/ 10.1017/S002237782000029X.
  • Siena A,Navarro A and Jenko F(2020).Turbulence suppression by energetic particle effects in modern optimized stellarators. Phys. Rev. Lett.125,10:1-5. https://doi.org/ 10.1103/PhysRevLett.125.105002
There are 24 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Article
Authors

Ayan Kumar Makar

Publication Date July 12, 2024
Submission Date March 23, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024 Volume: 37 Issue: 1

Cite

APA Makar, A. K. (2024). An investigation of energetic particles in the magnetically confined fusion plasma. Turkish Journal of Nuclear Sciences, 37(1), 7-14.
AMA Makar AK. An investigation of energetic particles in the magnetically confined fusion plasma. Turkish Journal of Nuclear Sciences. July 2024;37(1):7-14.
Chicago Makar, Ayan Kumar. “An Investigation of Energetic Particles in the Magnetically Confined Fusion Plasma”. Turkish Journal of Nuclear Sciences 37, no. 1 (July 2024): 7-14.
EndNote Makar AK (July 1, 2024) An investigation of energetic particles in the magnetically confined fusion plasma. Turkish Journal of Nuclear Sciences 37 1 7–14.
IEEE A. K. Makar, “An investigation of energetic particles in the magnetically confined fusion plasma”, Turkish Journal of Nuclear Sciences, vol. 37, no. 1, pp. 7–14, 2024.
ISNAD Makar, Ayan Kumar. “An Investigation of Energetic Particles in the Magnetically Confined Fusion Plasma”. Turkish Journal of Nuclear Sciences 37/1 (July 2024), 7-14.
JAMA Makar AK. An investigation of energetic particles in the magnetically confined fusion plasma. Turkish Journal of Nuclear Sciences. 2024;37:7–14.
MLA Makar, Ayan Kumar. “An Investigation of Energetic Particles in the Magnetically Confined Fusion Plasma”. Turkish Journal of Nuclear Sciences, vol. 37, no. 1, 2024, pp. 7-14.
Vancouver Makar AK. An investigation of energetic particles in the magnetically confined fusion plasma. Turkish Journal of Nuclear Sciences. 2024;37(1):7-14.