Research Article
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 3, 226 - 232, 30.12.2020

Abstract

References

  • [1] Altıntaş, O. and Owa, S. Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. and Math. Sci. 19, 797-800, 1996.
  • [2] Altıntaş, O., Özkan, E. and Srivastava, H. M. Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Let. 13, 63-67, 2000.
  • [3] Baricz, A., Çağlar, M. and Deniz, E. Starlikeness of bessel functions and their derivatives, Math. Inequal. Appl. 19(2), 439-449, 2016.
  • [4] Catas, A. Neighborhoods of a certain class of analytic functions with negative coefficients, Banach J. Math. Anal., 3(1), No. 1, 111-121, 2009.
  • [5] Darwish, H. E., Lashin A. Y. and Hassan B. F. Neighborhood properties of generalized Bessel function, Global Journal of Science Frontier Research (F), 15(9), 21-26, 2015.
  • [6] Deniz, E. and Orhan, H. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator, Czechoslovak Math. J., 60(135), 699–713, 2010.
  • [7] Elhaddad, S., Aldweby, H. and Darus, M. Neighborhoods of certain classes of analytic functions defined by generalized differential operator involving Mittag-Leffler function, Acta Universitatis Apulensis, No. 55, 1-10, 2018.
  • [8] Goodman, A. W. Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598-601, 1957.
  • [9] Ismail, M. E. H. and Muldoon, M.E. Bounds for the small real and purely imaginary zeros of Bessel and related functions, Meth. Appl. Anal. 2(1), 1-21 1995.
  • [10] Keerthi, B. S., Gangadharan, A. and Srivastava, H. M. Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients, Math. Comput. Model. 47, 271-277, 2008.
  • [11] Mercer, A. McD. The zeros of az^2 J_ϑ^'' (z)+bzJ_ϑ^' (z)+cJ_ϑ (z) as functions of order, Internat. J. Math. Math. Sci., 15, 319-322, 1992.
  • [12] Murugusundaramoorthy, G. and Srivastava, H. M. Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2), Art. 24. 8 pp., 2004.
  • [13] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark C. W. (Eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010.
  • [14] Orhan, H. On neighborhoods of analytic functions defined by using hadamard product, Novi Sad J. Math., 37(1), 17-25, 2007.
  • [15] Owa, S., Sekine, T. and Yamakawa, R. On Sakaguchi type functions, Appl. Math. Comput., 187, 356-361, 2007.
  • [16] Ruscheweyh, S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4), 521-527, 1981.
  • [17] Shah, S. M. and Trimble, S. Y. Entire functions with univalent derivatives, J. Math. Anal. Appl., 33, 220-229, 1971.
  • [18] Silverman H. Neighborhoods of a classes of analytic function, Far East J. Math. Sci., 3(2), 175-183, 1995.

Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ'' (z)+bzJ_ϑ' (z)+cJ_ϑ (z)

Year 2020, Volume: 5 Issue: 3, 226 - 232, 30.12.2020

Abstract

In this paper, we introduce a new subclass of analytic functions in the open unit disk U with negative coefficients defined by normalized of the az^2 J_ϑ^'' (z)+bzJ_ϑ^' (z)+cJ_ϑ (z) function, where J_ϑ (z) is called the Bessel function of the first kind of order ϑ. The object of the present paper is to determine coefficient inequalities, inclusion relations and neighborhoods properties for functions f(z) belonging to this subclass.

References

  • [1] Altıntaş, O. and Owa, S. Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. and Math. Sci. 19, 797-800, 1996.
  • [2] Altıntaş, O., Özkan, E. and Srivastava, H. M. Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Let. 13, 63-67, 2000.
  • [3] Baricz, A., Çağlar, M. and Deniz, E. Starlikeness of bessel functions and their derivatives, Math. Inequal. Appl. 19(2), 439-449, 2016.
  • [4] Catas, A. Neighborhoods of a certain class of analytic functions with negative coefficients, Banach J. Math. Anal., 3(1), No. 1, 111-121, 2009.
  • [5] Darwish, H. E., Lashin A. Y. and Hassan B. F. Neighborhood properties of generalized Bessel function, Global Journal of Science Frontier Research (F), 15(9), 21-26, 2015.
  • [6] Deniz, E. and Orhan, H. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator, Czechoslovak Math. J., 60(135), 699–713, 2010.
  • [7] Elhaddad, S., Aldweby, H. and Darus, M. Neighborhoods of certain classes of analytic functions defined by generalized differential operator involving Mittag-Leffler function, Acta Universitatis Apulensis, No. 55, 1-10, 2018.
  • [8] Goodman, A. W. Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598-601, 1957.
  • [9] Ismail, M. E. H. and Muldoon, M.E. Bounds for the small real and purely imaginary zeros of Bessel and related functions, Meth. Appl. Anal. 2(1), 1-21 1995.
  • [10] Keerthi, B. S., Gangadharan, A. and Srivastava, H. M. Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients, Math. Comput. Model. 47, 271-277, 2008.
  • [11] Mercer, A. McD. The zeros of az^2 J_ϑ^'' (z)+bzJ_ϑ^' (z)+cJ_ϑ (z) as functions of order, Internat. J. Math. Math. Sci., 15, 319-322, 1992.
  • [12] Murugusundaramoorthy, G. and Srivastava, H. M. Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2), Art. 24. 8 pp., 2004.
  • [13] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark C. W. (Eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010.
  • [14] Orhan, H. On neighborhoods of analytic functions defined by using hadamard product, Novi Sad J. Math., 37(1), 17-25, 2007.
  • [15] Owa, S., Sekine, T. and Yamakawa, R. On Sakaguchi type functions, Appl. Math. Comput., 187, 356-361, 2007.
  • [16] Ruscheweyh, S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4), 521-527, 1981.
  • [17] Shah, S. M. and Trimble, S. Y. Entire functions with univalent derivatives, J. Math. Anal. Appl., 33, 220-229, 1971.
  • [18] Silverman H. Neighborhoods of a classes of analytic function, Far East J. Math. Sci., 3(2), 175-183, 1995.
There are 18 citations in total.

Details

Primary Language English
Journal Section Volume V Issue III 2020
Authors

Murat Çağlar 0000-0001-8147-0343

Erhan Deniz 0000-0002-9570-8583

Sercan Kazımoğlu 0000-0002-1023-4500

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Çağlar, M., Deniz, E., & Kazımoğlu, S. (2020). Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z). Turkish Journal of Science, 5(3), 226-232.
AMA Çağlar M, Deniz E, Kazımoğlu S. Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z). TJOS. December 2020;5(3):226-232.
Chicago Çağlar, Murat, Erhan Deniz, and Sercan Kazımoğlu. “Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z)”. Turkish Journal of Science 5, no. 3 (December 2020): 226-32.
EndNote Çağlar M, Deniz E, Kazımoğlu S (December 1, 2020) Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z). Turkish Journal of Science 5 3 226–232.
IEEE M. Çağlar, E. Deniz, and S. Kazımoğlu, “Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z)”, TJOS, vol. 5, no. 3, pp. 226–232, 2020.
ISNAD Çağlar, Murat et al. “Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z)”. Turkish Journal of Science 5/3 (December 2020), 226-232.
JAMA Çağlar M, Deniz E, Kazımoğlu S. Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z). TJOS. 2020;5:226–232.
MLA Çağlar, Murat et al. “Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z)”. Turkish Journal of Science, vol. 5, no. 3, 2020, pp. 226-32.
Vancouver Çağlar M, Deniz E, Kazımoğlu S. Neighborhoods of Certain Classes of Analytic Functions Defined by Normalized Function az^2 J_ϑ’’ (z)+bzJ_ϑ’ (z)+cJ_ϑ (z). TJOS. 2020;5(3):226-32.