Research Article
BibTex RIS Cite

Integral Inequalities for Different Kinds of Convexity via Classical Inequalities

Year 2020, Volume: 5 Issue: 3, 305 - 313, 30.12.2020

Abstract

In this study, we obtain some new integral inequalities for different classes of convex functions by using classical inequalities like general Cauchy inequality and reverse Minkowski inequality.

References

  • M.K. Bakula, M.E. Özdemir and J. Peµcaric, Hadamard-type inequalities for m-convex and (α; m)convex functions, J. Inequal. Pure and Appl. Math., 9, (4), (2007), Article 96.
  • M.K. Bakula, J. Peµcaric and M. Ribibic, Companion inequalities to Jensen's inequality for m-convex and (α; m)convex functions, J. Inequal. Pure and Appl. Math., 7 (5) (2006), Article 194.
  • S.S. Dragomir and G. Toader, Some inequalities for mconvex functions, Studia University Babes Bolyai, Mathematica, 38 (1) (1993), 21-28.
  • V.G. Mihe¸san, A generalization of the convexity, Seminar of Functional Equations, Approx. and Convex, Cluj-Napoca (Romania) (1993).
  • G. Toader, Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj-Napoca, (1984), 329-338.
  • E. Set, M. Sardari, M.E. Ozdemir and J. Rooin, On generalizations of the Hadamard inequality for (α; m)convex functions, RGMIA Res. Rep. Coll., 12 (4) (2009), Article 4.
  • M.E. Özdemir, M. Avcı and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Applied Mathematics
  • G. Toader, On a generalization of the convexity, Mathematica, 30 (53) (1988), 83-87.
  • S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for mconvex functions, Tamkang Journal of Mathematics, 33 (1) (2002).
  • H. Hudzik and L. Maligranda, Some remarks on sconvex functions, Aequationes Math., 48 (1994) 100-111.
  • W.W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978) 13-20.
  • W.W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev Anal. Number. Theor. Approx., 22 (1993) 39-51.
  • S. Hussain, M.I. Bhatti and M. Iqbal, Hadamard-type inequalities for sconvex functions, Punjab University, Journal of Mathematics, 41 (2009) 51-60.
  • S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999) 687-696.
  • U.S. Kırmacı, M.K. Bakula, M.E. Özdemir and J. Peµcaric, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193 (2007) 26-35.
  • L. Bougofa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, article 60, 2006.
  • Q.A. Ngo, D.D. Thang, T.T. Dat and D.A. Tuan, Notes on an integral inequality, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 4, article 120, 2
Year 2020, Volume: 5 Issue: 3, 305 - 313, 30.12.2020

Abstract

References

  • M.K. Bakula, M.E. Özdemir and J. Peµcaric, Hadamard-type inequalities for m-convex and (α; m)convex functions, J. Inequal. Pure and Appl. Math., 9, (4), (2007), Article 96.
  • M.K. Bakula, J. Peµcaric and M. Ribibic, Companion inequalities to Jensen's inequality for m-convex and (α; m)convex functions, J. Inequal. Pure and Appl. Math., 7 (5) (2006), Article 194.
  • S.S. Dragomir and G. Toader, Some inequalities for mconvex functions, Studia University Babes Bolyai, Mathematica, 38 (1) (1993), 21-28.
  • V.G. Mihe¸san, A generalization of the convexity, Seminar of Functional Equations, Approx. and Convex, Cluj-Napoca (Romania) (1993).
  • G. Toader, Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj-Napoca, (1984), 329-338.
  • E. Set, M. Sardari, M.E. Ozdemir and J. Rooin, On generalizations of the Hadamard inequality for (α; m)convex functions, RGMIA Res. Rep. Coll., 12 (4) (2009), Article 4.
  • M.E. Özdemir, M. Avcı and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Applied Mathematics
  • G. Toader, On a generalization of the convexity, Mathematica, 30 (53) (1988), 83-87.
  • S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for mconvex functions, Tamkang Journal of Mathematics, 33 (1) (2002).
  • H. Hudzik and L. Maligranda, Some remarks on sconvex functions, Aequationes Math., 48 (1994) 100-111.
  • W.W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978) 13-20.
  • W.W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev Anal. Number. Theor. Approx., 22 (1993) 39-51.
  • S. Hussain, M.I. Bhatti and M. Iqbal, Hadamard-type inequalities for sconvex functions, Punjab University, Journal of Mathematics, 41 (2009) 51-60.
  • S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999) 687-696.
  • U.S. Kırmacı, M.K. Bakula, M.E. Özdemir and J. Peµcaric, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193 (2007) 26-35.
  • L. Bougofa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, article 60, 2006.
  • Q.A. Ngo, D.D. Thang, T.T. Dat and D.A. Tuan, Notes on an integral inequality, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 4, article 120, 2
There are 17 citations in total.

Details

Primary Language English
Journal Section Volume V Issue III 2020
Authors

Alper Ekinci 0000-0003-1589-2593

Ahmet Ocak Akdemir 0000-0003-2466-0508

Muhamet Emin Özdemir 0000-0002-5992-094X

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Ekinci, A., Akdemir, A. O., & Özdemir, M. E. (2020). Integral Inequalities for Different Kinds of Convexity via Classical Inequalities. Turkish Journal of Science, 5(3), 305-313.
AMA Ekinci A, Akdemir AO, Özdemir ME. Integral Inequalities for Different Kinds of Convexity via Classical Inequalities. TJOS. December 2020;5(3):305-313.
Chicago Ekinci, Alper, Ahmet Ocak Akdemir, and Muhamet Emin Özdemir. “Integral Inequalities for Different Kinds of Convexity via Classical Inequalities”. Turkish Journal of Science 5, no. 3 (December 2020): 305-13.
EndNote Ekinci A, Akdemir AO, Özdemir ME (December 1, 2020) Integral Inequalities for Different Kinds of Convexity via Classical Inequalities. Turkish Journal of Science 5 3 305–313.
IEEE A. Ekinci, A. O. Akdemir, and M. E. Özdemir, “Integral Inequalities for Different Kinds of Convexity via Classical Inequalities”, TJOS, vol. 5, no. 3, pp. 305–313, 2020.
ISNAD Ekinci, Alper et al. “Integral Inequalities for Different Kinds of Convexity via Classical Inequalities”. Turkish Journal of Science 5/3 (December 2020), 305-313.
JAMA Ekinci A, Akdemir AO, Özdemir ME. Integral Inequalities for Different Kinds of Convexity via Classical Inequalities. TJOS. 2020;5:305–313.
MLA Ekinci, Alper et al. “Integral Inequalities for Different Kinds of Convexity via Classical Inequalities”. Turkish Journal of Science, vol. 5, no. 3, 2020, pp. 305-13.
Vancouver Ekinci A, Akdemir AO, Özdemir ME. Integral Inequalities for Different Kinds of Convexity via Classical Inequalities. TJOS. 2020;5(3):305-13.