Review
BibTex RIS Cite

Entomoloji ve Gen Teknolojisi Arasındaki İlişki: Zararlı Mücadelesinde Bt-transgenikler ve Gen Sürücüsüleri

Year 2021, Volume: 3 Issue: 2, 108 - 115, 22.12.2021

Abstract

Zararlılar ile savaş, ürün verimliliğini artırmak ve böylece gıda güvenliğini sağlamak için en önemli tarımsal faaliyettir. Son dönemdeki zararlı yönetimi programları, sağlığımız ve çevremiz için bir tehdit oluşturan kimyasal pestisitlere çok fazla bağımlıdır. Bitki Korumanın yararları için en büyük entomolojik başarılardan biri, zararlılara dirençli transgenik bitkiler üretmek için Bacillus thuringiensis'in kullanılmasıdır. Ancak bu tür organizmalar genetik kirlilik açısından insan sağlığına ve biyoçeşitliliğe karşı sakıncalar içermektedir. Birçok ülkede genetiği değiştirilmiş organizmaların kullanımı yasaktır. Büyüyen gen teknolojisinin gerçek bilimsel başarılarla bütünleşmesine ilişkin bu çalışma, zararlı sorununa sürdürülebilir bir çözüm belirlemeye yardımcı olabilir. Bu çerçevede, gen sürücüsünün Bt transgenikleri üzerindeki etkinliğini, güvenliğini ve sürdürülebilirliğini bilimsel sağlamlığına dayandırarak, karşılaştırmalı olarak eleştirmek için birçok literatüre atıfta bulunulmuştur. Gen sürücü teknolojisi, gen mühendisliğinden ve transgeniklerinin sahada izlenmesinden oluşan yeni bir tekniktir. Buradaki durum, Bt-tansgenikleririn uygunsuzluğudur. Pratik olarak gen sürücü, artan güvenlik ve çevre koruma için zararlı mücadelesinde Bacillus thuringiensis'e bir alternatif olabilir.

References

  • Alphey, L.S., Crisanti, A., Randazzo, F. F., & Akbari, O. S. (2020). Opinion: Standardizing the definition of gene drive. Proceedings of the National Academy of Sciences, 117(49), 30864-30867.
  • Aydın, C.İ., Özertan, G., & Özkaynak, B. (2013). Assessing the GMO debate in Turkey: The case of cotton farming. New Perspectives on Turkey, 49, 5-29.
  • Bakhsh, A., Khabbazi, S. D., Baloch, F. S., Demirel, U. Çalışkan, M. E., Hatipoğlu, R., Özcan, S., & Özkan H. (2015). Insect-resistant transgenic crops: retrospect and challenges Insect-resistant transgenic crops: retrospect and challenges. Turkish Journal of Agriculture and Forestry, 39(4), 531-548.
  • Bakhsh, A., Rao. A. Q., Shahid. A. A., Husnain, T., & Riazuddin, S. (2009). Insect resistance and risk assessment studies in advance lines of Bt cotton harbouring Cry1Ac and Cry2A genes. American- Eurasian Journal of Agriculture and Environmental Science, 6(1), 01-11.
  • Bakshi, A. (2003). Potential adverse health effects of genetically modified crops. Journal of Toxicology and Environmental Health, Part B, 6(3), 211-225.
  • Barrett, L.G., Legros, M., Kumaran, N., Glassop, D., Raghu, S., & Gardiner, D.M. (2019). Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proceedings of the Royal Society of B, Biological Science, 286, 1-9. https://doi.org/10.1098/rspb.2019.1515
  • Buchman, A., Marshall, J.M., Ostrovski, D., Yang, T., & Akbari, O.S. (2018). Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proceedings of the National Academy of Sciences of the United States of America, 115, 4725-4730.
  • Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society of B, Biological Science, 270, 921-928.
  • Champer, J., Buchman, A., & Akbari, O.S. (2016). Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nature Reviews-Genetics. Macmillan Publishers Limited, 17(3), 146-59.
  • Courtier-Orgogozo, V., Morizot, B., & Boëte, C. (2017). Agricultural pest control with CRISPR-based gene drive: time for public debate. Should we use gene drive for pest control? Science and society. EMBO report, 18(6), 878-880.
  • Curry, D. (2002). Farming and Food: A Sustainable Future. Report of the Policy Commission on the Future of Farming and Food. London, UK: Her Majesty’s Stationery Office: 90-92.
  • Dearden, P.K., Gemmell, N. J., Mercier, O. R., Lester, P. J., Scott, M. J., Newcomb, R. D., Buckley, T. R., Jacobs, J. M. E., Goldson, S. G., & Penman, D. R. (2017). The potential for the use of gene drives for pest control in New Zealand: a perspective. Journal of the Royal Society of New Zealand, 48(4), 225-244.
  • Delborne, J.A. (2016). Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. National Academies of Sciences, Engineering, and Medicines, 358(6367), 1135-1136. DOI: 10.1126/science.aap9026
  • DeFrancesco, L. (2015). Gene Drive Overdrive. Nature Biotechnology, 33, 1019-1021.
  • DiCarlo, J.E., Chavez, A., Dietz, S.L., Esvelt, K.M., & Church, G.M. (2015). Safeguarding CRISPR-Cas9 gene drives in yeast. Nature Biotechnology, 33(12), 1250-1255.
  • El-Wakeil, N., Gafaar, N., Sallam, A., & Volkmar, C. (2014). Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. Insecticides-Development of Safer and More Effective Technologies. (Ed. Stanislaw Trdan, İnsecticides), InTech, 548. http://dx.doi.org/10.5772/54199.
  • Esvelt, K.M. (2016). Openly engineering our ecosystems.TEDxCambridge. Online Presentation. https://www.youtube.com/watch?v=eoRqivhO6NM&t=487s.
  • Esvelt, K.M. (2019). Gene drive. MIT. Online Presentation. https://www.youtube.com/watch?v=7X715cD02sA&t=157s.
  • Esvelt, K.M., Smidler, A.L., Catteruccia, F., & Church, G.M. (2014). Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations. Elife, 3: e03401.
  • EFSA (European Food Safety Authority) Panel on Genetically Modified Organisms (GMO). (2020). Evaluation of existing EFSA guidelines for their adequacy for the molecular characterisation and environmental risk assessment of genetically modified insects with synthetically engineered gene drives. European Food Safety Authority Journal, 18 (11), e06297. doi: 10.2903/j.efsa.2021.6301
  • Gantz, V.M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V.M., Bier, E., & James, A.A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences in U.S.A, 112(49), 6736-6743. Gantz, V.M., & Bier, E. (2015). The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science, 348(6233), 442-444.
  • Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., & Russel, S., Burt, A., Windbickler, A.C., Crisanti, A., & Nolan, T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34(1), 78-83. KaramiNejadRanjbar, M., Eckermann, K.N., Ahmed, H.M.M., Sánchez, C.H.M., Dippel, S., Marshall, J.M., & Wimmer,
  • E.A. (2018). Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proceedings of the National Academy of Sciences of the U S A, 115(24), 6189-6194.
  • Kelsey, A., Stillinger, D., Pham, T.B., Murphy, J., Firth, S., & Carballar-Lejarazu, R. (2020). Global Governing Bodies: A pathway for gene drive governance for vector mosquito control. The American Journal of Tropical Medicine and Hygiene, 103(3), 976–985.
  • Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., & Crisanti, A. (2018). A CRISPR-Cas9 gene drive targeting double sex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 36, 1062-1066.
  • Londo, J.P., Bautista, N.S., Sagers, C.L., Lee, H.E., & Watrud, L.S. (2010). Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Annals of Botany 106(6), 957-965.
  • Losey, J.E., Rayor, L.S., & Carter, M.E. (1999). Transgenic pollen harms monarch larvae. Nature, 399, 214-215
  • Lövei, G.L., Andow, D.A., & Arpaia, S. (2009). Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environmental Entomology 38(2), 293-306.
  • Lunshof, J., Shachar, C., & Edison, R., & Jayanti, A. (2020). Technology Factsheet Series: Gene drives. Belfer center for science and international affairs. Available on: belfercenter.org/TAPP.
  • Marshall, J.M., & Akbari, O.S. (2018). Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS Chemical Biology, 13(2), 424-430.
  • Messeguer, J. (2003). Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture, 73, 201-212.
  • Metchanun, N., Borgemeister, C., von Braun, J., Nikolov, N., Selvaraj, P., & Gerardin, J. (2020). Role of gene drives in an integrated malaria elimination strategy in high burden countries: modeling impact and cost-effectiveness in the Democratic Republic of the Congo. MedRxiv preprint server for health sciences.
  • Medina, R.F. (2017). Gene drives and management of agricultural pests. Journal of responsible innovation, 5, 255-262.
  • NEA (National Environmental Agency). (2021). Using male Wolbachia-carrying Aedes aegypti (Wolbachia-Aedes) mosquitoes to reduce the dengue mosquito population. Wolbachia-Aedes mosquito suppression strategy. Singapore Government Agency website. https://www.nea.gov.sg.
  • Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2013). An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34(1), 77-88.
  • Normander, B., Christensen, B.B., Molin, S., & Kroer, N. (1998). Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Applied and Environmental Microbiology, 64(5), 1902-1909.
  • Perkin, L.C., Adrianos, S.L., & Oppert, B. (2016). Gene disruption technologies have the potential to transform stored product insect pest control. Insects, 7(3), 46. https://doi.org/10.3390/insects7030046
  • Qaim, M. (2009). The economics of genetically modified crops. Annual Review of Resource Economics, 1(1), 665-693.
  • RSTA (Royal Society Te Apārangi) Gene Editing Panel. (2017). The use of gene editing to create gene drives for pest control in New Zealand. Royal society of the New Zealand.
  • Saxena, D., & Stotzky, G. (2000). Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in-vitro and in-situ. FEMS Microbiology Ecology, 33(1), 35-39.
  • Selvaraj, P.P., Wenger, E.A., Bridenbecker, D., Windbickler, N., Russell, J.R., Gerardin, J., Bever, C.A., & Nikolov, M. (2020). Vector genetics, insecticide resistance and gene drives: An agent-based modelling approach to evaluate malaria transmission and elimination. PLOS Computational Biology 16(8), e108121
  • Steinbrecher, R.A., & Wells, M. (2019). Gene Drives, a report on their science, applications, social aspects, ethics and regulations. Critical Scientists Switzerland (CSS), European Network of Scientists for Social and Environmental Responsibility (ENSSER) and Vereinigung Deutscher Wissenschaftler (VDW).
  • Taştan, C., & Sakartepe, E. (2018). CRISPR Genom Modififikasyonları T101. Researchgate. PhD Thesis. Zhang, B.H., Pan, X.P., Guo, T.L., Wang, Q.L., Wang, Q.L., & Anderson, T.A. (2005). Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Molecular Biotechnology, 31, 11-20.

Interaction Between Entomology and Gene Technology: Bt-transgenic and Gene Drives for Pests Control

Year 2021, Volume: 3 Issue: 2, 108 - 115, 22.12.2021

Abstract

Pest control is the major agricultural activity for increasing crop productivity thus insuring food security. Recent pest management programs are depending too much on chemical pesticides, which are a threat to our health and environment. One of the greatest entomological achievements for the benefits of plant protection is the use of Bacillus thuringiensis to produce transgenic plants resisting pests. However, such organisms comprise inconveniences against human health and biodiversity in terms of genetic pollution. In many countries, the use of Genetically Modified Organisms is prohibited. This study review on integration of growing gene technology with actual scientific achievements can help to determine a sustainable solution to the pest’s problem. In this way, many literatures were referred on to comparatively criticize the effectiveness, safety and sustainability of gene drive over Bt transgenic based on scientific soundness. Gene drive technology is a new technic consisting of gene engineering and on-field monitoring of its transgenes. The case in point is the inappropriateness of Bt-transgenes. Practically, gene drive can be an alternative to Bacillus thuringiensis in pest control for increased safety and environmental protection.

References

  • Alphey, L.S., Crisanti, A., Randazzo, F. F., & Akbari, O. S. (2020). Opinion: Standardizing the definition of gene drive. Proceedings of the National Academy of Sciences, 117(49), 30864-30867.
  • Aydın, C.İ., Özertan, G., & Özkaynak, B. (2013). Assessing the GMO debate in Turkey: The case of cotton farming. New Perspectives on Turkey, 49, 5-29.
  • Bakhsh, A., Khabbazi, S. D., Baloch, F. S., Demirel, U. Çalışkan, M. E., Hatipoğlu, R., Özcan, S., & Özkan H. (2015). Insect-resistant transgenic crops: retrospect and challenges Insect-resistant transgenic crops: retrospect and challenges. Turkish Journal of Agriculture and Forestry, 39(4), 531-548.
  • Bakhsh, A., Rao. A. Q., Shahid. A. A., Husnain, T., & Riazuddin, S. (2009). Insect resistance and risk assessment studies in advance lines of Bt cotton harbouring Cry1Ac and Cry2A genes. American- Eurasian Journal of Agriculture and Environmental Science, 6(1), 01-11.
  • Bakshi, A. (2003). Potential adverse health effects of genetically modified crops. Journal of Toxicology and Environmental Health, Part B, 6(3), 211-225.
  • Barrett, L.G., Legros, M., Kumaran, N., Glassop, D., Raghu, S., & Gardiner, D.M. (2019). Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proceedings of the Royal Society of B, Biological Science, 286, 1-9. https://doi.org/10.1098/rspb.2019.1515
  • Buchman, A., Marshall, J.M., Ostrovski, D., Yang, T., & Akbari, O.S. (2018). Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proceedings of the National Academy of Sciences of the United States of America, 115, 4725-4730.
  • Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society of B, Biological Science, 270, 921-928.
  • Champer, J., Buchman, A., & Akbari, O.S. (2016). Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nature Reviews-Genetics. Macmillan Publishers Limited, 17(3), 146-59.
  • Courtier-Orgogozo, V., Morizot, B., & Boëte, C. (2017). Agricultural pest control with CRISPR-based gene drive: time for public debate. Should we use gene drive for pest control? Science and society. EMBO report, 18(6), 878-880.
  • Curry, D. (2002). Farming and Food: A Sustainable Future. Report of the Policy Commission on the Future of Farming and Food. London, UK: Her Majesty’s Stationery Office: 90-92.
  • Dearden, P.K., Gemmell, N. J., Mercier, O. R., Lester, P. J., Scott, M. J., Newcomb, R. D., Buckley, T. R., Jacobs, J. M. E., Goldson, S. G., & Penman, D. R. (2017). The potential for the use of gene drives for pest control in New Zealand: a perspective. Journal of the Royal Society of New Zealand, 48(4), 225-244.
  • Delborne, J.A. (2016). Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. National Academies of Sciences, Engineering, and Medicines, 358(6367), 1135-1136. DOI: 10.1126/science.aap9026
  • DeFrancesco, L. (2015). Gene Drive Overdrive. Nature Biotechnology, 33, 1019-1021.
  • DiCarlo, J.E., Chavez, A., Dietz, S.L., Esvelt, K.M., & Church, G.M. (2015). Safeguarding CRISPR-Cas9 gene drives in yeast. Nature Biotechnology, 33(12), 1250-1255.
  • El-Wakeil, N., Gafaar, N., Sallam, A., & Volkmar, C. (2014). Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. Insecticides-Development of Safer and More Effective Technologies. (Ed. Stanislaw Trdan, İnsecticides), InTech, 548. http://dx.doi.org/10.5772/54199.
  • Esvelt, K.M. (2016). Openly engineering our ecosystems.TEDxCambridge. Online Presentation. https://www.youtube.com/watch?v=eoRqivhO6NM&t=487s.
  • Esvelt, K.M. (2019). Gene drive. MIT. Online Presentation. https://www.youtube.com/watch?v=7X715cD02sA&t=157s.
  • Esvelt, K.M., Smidler, A.L., Catteruccia, F., & Church, G.M. (2014). Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations. Elife, 3: e03401.
  • EFSA (European Food Safety Authority) Panel on Genetically Modified Organisms (GMO). (2020). Evaluation of existing EFSA guidelines for their adequacy for the molecular characterisation and environmental risk assessment of genetically modified insects with synthetically engineered gene drives. European Food Safety Authority Journal, 18 (11), e06297. doi: 10.2903/j.efsa.2021.6301
  • Gantz, V.M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V.M., Bier, E., & James, A.A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences in U.S.A, 112(49), 6736-6743. Gantz, V.M., & Bier, E. (2015). The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science, 348(6233), 442-444.
  • Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., & Russel, S., Burt, A., Windbickler, A.C., Crisanti, A., & Nolan, T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34(1), 78-83. KaramiNejadRanjbar, M., Eckermann, K.N., Ahmed, H.M.M., Sánchez, C.H.M., Dippel, S., Marshall, J.M., & Wimmer,
  • E.A. (2018). Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proceedings of the National Academy of Sciences of the U S A, 115(24), 6189-6194.
  • Kelsey, A., Stillinger, D., Pham, T.B., Murphy, J., Firth, S., & Carballar-Lejarazu, R. (2020). Global Governing Bodies: A pathway for gene drive governance for vector mosquito control. The American Journal of Tropical Medicine and Hygiene, 103(3), 976–985.
  • Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., & Crisanti, A. (2018). A CRISPR-Cas9 gene drive targeting double sex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 36, 1062-1066.
  • Londo, J.P., Bautista, N.S., Sagers, C.L., Lee, H.E., & Watrud, L.S. (2010). Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Annals of Botany 106(6), 957-965.
  • Losey, J.E., Rayor, L.S., & Carter, M.E. (1999). Transgenic pollen harms monarch larvae. Nature, 399, 214-215
  • Lövei, G.L., Andow, D.A., & Arpaia, S. (2009). Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environmental Entomology 38(2), 293-306.
  • Lunshof, J., Shachar, C., & Edison, R., & Jayanti, A. (2020). Technology Factsheet Series: Gene drives. Belfer center for science and international affairs. Available on: belfercenter.org/TAPP.
  • Marshall, J.M., & Akbari, O.S. (2018). Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS Chemical Biology, 13(2), 424-430.
  • Messeguer, J. (2003). Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture, 73, 201-212.
  • Metchanun, N., Borgemeister, C., von Braun, J., Nikolov, N., Selvaraj, P., & Gerardin, J. (2020). Role of gene drives in an integrated malaria elimination strategy in high burden countries: modeling impact and cost-effectiveness in the Democratic Republic of the Congo. MedRxiv preprint server for health sciences.
  • Medina, R.F. (2017). Gene drives and management of agricultural pests. Journal of responsible innovation, 5, 255-262.
  • NEA (National Environmental Agency). (2021). Using male Wolbachia-carrying Aedes aegypti (Wolbachia-Aedes) mosquitoes to reduce the dengue mosquito population. Wolbachia-Aedes mosquito suppression strategy. Singapore Government Agency website. https://www.nea.gov.sg.
  • Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2013). An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34(1), 77-88.
  • Normander, B., Christensen, B.B., Molin, S., & Kroer, N. (1998). Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Applied and Environmental Microbiology, 64(5), 1902-1909.
  • Perkin, L.C., Adrianos, S.L., & Oppert, B. (2016). Gene disruption technologies have the potential to transform stored product insect pest control. Insects, 7(3), 46. https://doi.org/10.3390/insects7030046
  • Qaim, M. (2009). The economics of genetically modified crops. Annual Review of Resource Economics, 1(1), 665-693.
  • RSTA (Royal Society Te Apārangi) Gene Editing Panel. (2017). The use of gene editing to create gene drives for pest control in New Zealand. Royal society of the New Zealand.
  • Saxena, D., & Stotzky, G. (2000). Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in-vitro and in-situ. FEMS Microbiology Ecology, 33(1), 35-39.
  • Selvaraj, P.P., Wenger, E.A., Bridenbecker, D., Windbickler, N., Russell, J.R., Gerardin, J., Bever, C.A., & Nikolov, M. (2020). Vector genetics, insecticide resistance and gene drives: An agent-based modelling approach to evaluate malaria transmission and elimination. PLOS Computational Biology 16(8), e108121
  • Steinbrecher, R.A., & Wells, M. (2019). Gene Drives, a report on their science, applications, social aspects, ethics and regulations. Critical Scientists Switzerland (CSS), European Network of Scientists for Social and Environmental Responsibility (ENSSER) and Vereinigung Deutscher Wissenschaftler (VDW).
  • Taştan, C., & Sakartepe, E. (2018). CRISPR Genom Modififikasyonları T101. Researchgate. PhD Thesis. Zhang, B.H., Pan, X.P., Guo, T.L., Wang, Q.L., Wang, Q.L., & Anderson, T.A. (2005). Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Molecular Biotechnology, 31, 11-20.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review
Authors

Jean Claude Ndayıragıje This is me 0000-0003-0013-9590

Tuğçe Özek This is me 0000-0001-6529-2591

Hacer Çevik This is me 0000-0002-9948-1179

İsmail Karaca 0000-0002-0975-789X

Publication Date December 22, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Ndayıragıje, J. C., Özek, T., Çevik, H., Karaca, İ. (2021). Interaction Between Entomology and Gene Technology: Bt-transgenic and Gene Drives for Pests Control. Türk Bilim Ve Mühendislik Dergisi, 3(2), 108-115.