Research Article
BibTex RIS Cite

A Substitution-Box Structure Based on Solar Panel Data

Year 2022, Volume: 17 Issue: 1, 143 - 149, 20.03.2022
https://doi.org/10.55525/tjst.1034034

Abstract

The demonstration that the nonlinearity criterion of substitution box (s-box) structures based on the random selection principle can be improved through post-processing techniques has created a new research area. The necessity of obtaining sbox structures that can be given as input to these post-processing algorithms has emerged. In this study, a study was carried out on how to obtain sbox structures based on solar panel data. The cryptological properties of the obtained sbox structures were tested using five basic evaluation metrics and compared with similar studies in the literature. The successful results indicated that these outputs may have various practical applications in the future.

References

  • [1]. Z. M. Z. Muhammad and F. Özkaynak, "Security Problems of Chaotic Image Encryption Algorithms Based on Cryptanalysis Driven Design Technique," in IEEE Access, vol. 7, pp. 99945-99953, 2019, doi: 10.1109/ACCESS.2019.2930606.
  • [2]. V Dudykevych, I Garasym, Survivable security Systems Analysis, 2010, Computer science and information technologies: Materials of the VIth International scientific and technical conference CSIT, 108-110
  • [3]. F. Artuğer, F. Özkaynak, "An effective method to improve nonlinearity value of substitution boxes based on random selection", Information Sciences 576, 577-588, 2021, doi: 10.1016/j.ins.2021.07.036
  • [4]. T. Cusick and P. Stanica, Cryptographic Boolean Functions and Applica- tions. Amsterdam, The Netherlands: Elsevier, 2009.
  • [5]. C. Wu and D. Feng, Boolean Functions and Their Applications in Cryp- tography. Berlin, Germany: Springer, 2016.
  • [6]. F Artuğer, F Özkaynak, A method for generation of substitution box based on random selection, Egyptian Informatics, https://doi.org/10.1016/j.eij.2021.08.002
  • [7]. London Datastore, Solar Panel Energy Generation data, https://data.london.gov.uk/dataset/photovoltaic--pv--solar-panel-energy-generation-data
  • [8]. K. Nyberg, “Differentially uniform mappings for cryptography,” inProc. Eurocrypt, in Lecture Notes in Computer Science, vol. 765. Berlin, Germany: Springer, 1994, pp. 55–64.
  • [9]. M. S. Acikkapi, F. Ozkaynak, and A. B. Ozer, “Side-channel analy- sis of chaos-based substitution box structures,” IEEE Access, vol. 7, pp. 79030–79043, 2019, doi: 10.1109/ACCESS.2019.2921708.
  • [10]. I. Hussain, T. Shah, H. Mahmood, and M. Gondal, ‘‘A projective general linear group based algorithm for the construction of substitution box for block ciphers,’’ Neural Comput. Appl., vol. 22, no. 6, pp. 1085–1093, 2013.
  • [11]. M. Khan and T. Shah, ‘‘A novel image encryption technique based on Hénon chaotic map and S8 symmetric group,’’ Neural Comput. Appl., vol. 25, nos. 7–8, pp. 1717–1722, 2014.
  • [12]. A. Belazi and A. A. A. El-Latif, “A simple yet efficient S-box method based on chaotic sine map,’’ Optik, vol. 130, pp. 1438–1444, Feb. 2017.
  • [13]. A. Belazi, A. Khan, A. Latif, and S. Belghith, “Efficient cryptosys- tem approaches: S-boxes and permutation–substitution-based encryption,’’ Nonlinear Dyn., vol. 87, no. 1, pp. 337–361, 2017.
  • [14]. I. Hussain, T. Shah, M. Gondal, and H. Mahmood, “A novel method for designing nonlinear component for block cipher based on TD-ERCS chaotic sequence,” Nonlinear Dyn., vol. 73, no. 1, pp. 633–637, 2013.
  • [15]. K. K. Butt, G. Li, F. Masood, S. Khan, “A Digital Image Confidentiality Scheme Based on Pseudo-Quantum Chaos and Lucas Sequence”, Entropy 2020, 22(11), 1276; https://doi.org/10.3390/e22111276
  • [16]. F. Özkaynak, “On the effect of chaotic system in performance character- istics of chaos based S-box designs,” Phys. A, Stat. Mech. Appl., vol. 550, Jul. 2020, Art. no. 124072, doi: 10.1016/j.physa.2019.124072.
  • [17]. M. Ş. Açikkapi and F. Özkaynak, "A Method to Determine the Most Suitable Initial Conditions of Chaotic Map in Statistical Randomness Applications," in IEEE Access, vol. 9, pp. 1482-1494, 2021, doi: 10.1109/ACCESS.2020.3046470.
  • [18]. F. Özkaynak, “From biometric data to cryptographic primitives: A new method for generation of substitution boxes,” in Proc. ACM Int. Conf. Biomed. Eng. Bioinformat., Bangkok, Thailand, Sep. 2017, pp. 27–33. doi: 10.1145/3143344.3143355.
  • [19]. F. Artuğer and F. Özkaynak, ”A novel method for performance improvement of chaos-based substitution boxes,” Symmetry, vol. 12, no. 4, p. 571, Apr. 2020.
  • [20]. I. Hussain, T. Shah, H. Mahmood, and M. Gondal, “Construction of S8 Liu J S-boxes and their applications,” Comput. Math. Appl., vol. 64, no. 8, pp. 2450–2458, 2012.
  • [21]. I. Hussain, T. Shah, M. Gondal, W. Khan, and H. Mahmood, “A group theoretic approach to construct cryptographically strong substitution boxes,” Neural Comput. Appl., vol. 23, no. 1, pp. 97–104, 2013.
  • [22]. I. Hussain, T. Shah, and M. Gondal, “A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm,” Nonlinear Dyn., vol. 70, no. 3, pp. 1791–1794, 2012.
  • [23]. M. Khanand, and T. Shah, “An efficient construction of substitution box with fractional chaotic system,” Signal, Image Video Process., vol. 9, no. 6, pp. 1335–1338, 2015.
  • [24]. F. Özkaynak, V. Çelik, and A. B. Özer, “A new S-box construction method based on the fractional-order chaotic Chen system,” Signal, Image Video Process., vol. 11, no. 4, pp. 659–664, 2017.
  • [25]. F. Özkaynak, “An analysis and generation toolbox for chaotic substitu- tion boxes: A case study based on chaotic labyrinth rene thomas sys- tem,” Iranian J. Sci. Technol.-Trans. Elect. Eng., pp. 1–10, 2019. doi: 10.1007/s40998-019-00230-6.
  • [26]. L.Liu, Y.Zhang, and X.Wang, “AnovelmethodforconstructingtheS- box based on spatiotemporal chaotic dynamics,” Appl. Sci., vol. 8, no. 12, p. 2650, 2018. doi: 10.3390/app8122650.
  • [27]. G. Chen, “A novel heuristic method for obtaining S-boxes,” Chaos, Soli- tons Fractals, vol. 36, no. 4, pp. 1028–1036, 2008.
  • [28]. X. Wang, J. Yang, “A novel image encryption scheme of dynamic S-boxes and random blocks based on spatiotemporal chaotic system”, Optik - International Journal for Light and Electron Optics 217 (2020) 164884
  • [29]. N. A. Khan, M. Altaf, F. A. Khan, “Selective encryption of JPEG images with chaotic based novel S-box”. Multimed Tools Appl (2020). https://doi.org/10.1007/s11042-020-10110-5
  • [30]. M. Khan, T. Shah, and M. Gondal, “An efficient technique for the construction of substitution box with chaotic partial differential equation,” Nonlinear Dyn., vol. 73, no. 3, pp. 1795–1801, 2013.
  • [31]. M. Khan and T. Shah, “A construction of novel chaos base nonlinear component of block cipher,” Nonlinear Dyn., vol. 76, no. 1, pp. 377–382, 2014.
  • [32]. H. Liu, A. Kadir, and Y. Niu, “Chaos-based color image block encryption scheme using S-box,” AEU-Int. J. Electron. Commun., vol. 68, no. 7, pp. 676–686, Jul. 2014.
  • [33]. M. Khan, T. Shah, and S. Batool, “A new implementation of chaotic S-boxes in CAPTCHA, “Signal, Image Video Process., vol. 10, no. 2, pp. 293–300, 2016.
  • [34]. G. Tang and X. Liao, “A method for designing dynamical S-boxes based on discretized chaotic map,” Chaos Solitons Fractals, vol. 23, no. 5, pp. 1901–1909, 2005.
  • [35]. F. Özkaynak and S. Yavuz, “Designing chaotic S-boxes based on time- delay chaotic system”, Nonlinear Dyn., vol. 74, no. 3, pp. 551–557, Nov. 2013.
  • [36]. G. Tang, X. Liao, and Y. Chen, “A novel method for designing S-boxes based on chaotic maps” Chaos Solitons Fractals, vol. 23, no. 2, pp. 413–419, 2005.
  • [37]. N. Hematpour and S. Ahadpour, “Execution examination of chaotic S- box dependent on improved PSO algorithm,” Neural Comput. Appl., Aug. 2020, doi: 10.1007/s00521-020-05304-9.
  • [38]. G. Jakimoski and L. Kocarev, “Chaos and cryptography: Block encryption ciphers based on chaotic maps,” IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., vol. 48, no. 2, pp. 163–169, Feb. 2011.
  • [39]. F. Özkaynak and A. B. Özer, “A method for designing strong S-boxes based on chaotic Lorenz system,” Phys. Lett. A, vol. 374, no. 36, pp. 3733–3738, 2010.
  • [40]. M. Khan, T. Shah, H. Mahmood, M. Gondal, and I. Hussain, “A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems,” Nonlinear Dyn., vol. 70, no. 3, pp. 2303–2311, 2012.
  • [41]. G. Chen, Y. Chen, and X. Liao, “An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps”, Chaos Solitons Fractals, vol. 31, no. 3, pp. 571–579, 2007.
  • [42]. M. Khan, T. Shah, H. Mahmood, and M. Gondal, “An efficient method for the construction of block cipher with multi-chaotic systems,” Nonlinear Dyn., vol. 71, no. 3, pp. 489–492, 2013.
  • [43]. M. Khan and Z. Asghar, “A novel construction of substitution box for image encryption applications with Gingerbreadman chaotic map and S8 permutation,” Neural Comput. Appl., vol. 29, no. 4, pp. 993–999, Feb. 2018. doi: 10.1007/s00521-016-2511-5.
  • [44]. S. Jamal, M. Khan, and T. Shah, “A watermarking technique with chaotic fractional S-box transformation,” Wireless Pers. Commun., vol. 90, no. 4, pp. 2033–2049, 2016.
  • [45]. B. B. Cassal-Quiroga and E. Campos-Canton, “Generation of Dynamical S-Boxes for Block Ciphers via Extended Logistic Map,” Mathematical Problems in Engineering Volume 2020, https://doi.org/10.1155/2020/2702653
  • [46]. A. Freyre-Echevarria, I. Martinez-Diaz, C. M. L. Perez, G. Sosa-Gomez, and O. Rojas, “Evolving nonlinear S-boxes with improved theoretical resilience to power attacks,” IEEE Access, vol. 8, pp. 202728–202737, 2020, doi: 10.1109/ACCESS.2020.3035163.
  • [47]. M. Khan, “A novel image encryption scheme based on multiple chaotic S-boxes,” Nonlinear Dyn., vol. 82, no. 1, pp. 527–533, 2015.
  • [48]. M. Khan, T. Shah, and S. Batool, “Construction of S-box based on chaotic Boolean functions and its application in image encryption,” Neural Com- put. Appl., vol. 27, no. 3, pp. 677–685, 2016.
  • [49]. F. Artuğer, F. Özkaynak, "A method for generation of substitution box based on random selection", Egyptian Informatics Journal 23 (1), 127-135 2022, doi: 10.1016/j.eij.2021.08.002
Year 2022, Volume: 17 Issue: 1, 143 - 149, 20.03.2022
https://doi.org/10.55525/tjst.1034034

Abstract

References

  • [1]. Z. M. Z. Muhammad and F. Özkaynak, "Security Problems of Chaotic Image Encryption Algorithms Based on Cryptanalysis Driven Design Technique," in IEEE Access, vol. 7, pp. 99945-99953, 2019, doi: 10.1109/ACCESS.2019.2930606.
  • [2]. V Dudykevych, I Garasym, Survivable security Systems Analysis, 2010, Computer science and information technologies: Materials of the VIth International scientific and technical conference CSIT, 108-110
  • [3]. F. Artuğer, F. Özkaynak, "An effective method to improve nonlinearity value of substitution boxes based on random selection", Information Sciences 576, 577-588, 2021, doi: 10.1016/j.ins.2021.07.036
  • [4]. T. Cusick and P. Stanica, Cryptographic Boolean Functions and Applica- tions. Amsterdam, The Netherlands: Elsevier, 2009.
  • [5]. C. Wu and D. Feng, Boolean Functions and Their Applications in Cryp- tography. Berlin, Germany: Springer, 2016.
  • [6]. F Artuğer, F Özkaynak, A method for generation of substitution box based on random selection, Egyptian Informatics, https://doi.org/10.1016/j.eij.2021.08.002
  • [7]. London Datastore, Solar Panel Energy Generation data, https://data.london.gov.uk/dataset/photovoltaic--pv--solar-panel-energy-generation-data
  • [8]. K. Nyberg, “Differentially uniform mappings for cryptography,” inProc. Eurocrypt, in Lecture Notes in Computer Science, vol. 765. Berlin, Germany: Springer, 1994, pp. 55–64.
  • [9]. M. S. Acikkapi, F. Ozkaynak, and A. B. Ozer, “Side-channel analy- sis of chaos-based substitution box structures,” IEEE Access, vol. 7, pp. 79030–79043, 2019, doi: 10.1109/ACCESS.2019.2921708.
  • [10]. I. Hussain, T. Shah, H. Mahmood, and M. Gondal, ‘‘A projective general linear group based algorithm for the construction of substitution box for block ciphers,’’ Neural Comput. Appl., vol. 22, no. 6, pp. 1085–1093, 2013.
  • [11]. M. Khan and T. Shah, ‘‘A novel image encryption technique based on Hénon chaotic map and S8 symmetric group,’’ Neural Comput. Appl., vol. 25, nos. 7–8, pp. 1717–1722, 2014.
  • [12]. A. Belazi and A. A. A. El-Latif, “A simple yet efficient S-box method based on chaotic sine map,’’ Optik, vol. 130, pp. 1438–1444, Feb. 2017.
  • [13]. A. Belazi, A. Khan, A. Latif, and S. Belghith, “Efficient cryptosys- tem approaches: S-boxes and permutation–substitution-based encryption,’’ Nonlinear Dyn., vol. 87, no. 1, pp. 337–361, 2017.
  • [14]. I. Hussain, T. Shah, M. Gondal, and H. Mahmood, “A novel method for designing nonlinear component for block cipher based on TD-ERCS chaotic sequence,” Nonlinear Dyn., vol. 73, no. 1, pp. 633–637, 2013.
  • [15]. K. K. Butt, G. Li, F. Masood, S. Khan, “A Digital Image Confidentiality Scheme Based on Pseudo-Quantum Chaos and Lucas Sequence”, Entropy 2020, 22(11), 1276; https://doi.org/10.3390/e22111276
  • [16]. F. Özkaynak, “On the effect of chaotic system in performance character- istics of chaos based S-box designs,” Phys. A, Stat. Mech. Appl., vol. 550, Jul. 2020, Art. no. 124072, doi: 10.1016/j.physa.2019.124072.
  • [17]. M. Ş. Açikkapi and F. Özkaynak, "A Method to Determine the Most Suitable Initial Conditions of Chaotic Map in Statistical Randomness Applications," in IEEE Access, vol. 9, pp. 1482-1494, 2021, doi: 10.1109/ACCESS.2020.3046470.
  • [18]. F. Özkaynak, “From biometric data to cryptographic primitives: A new method for generation of substitution boxes,” in Proc. ACM Int. Conf. Biomed. Eng. Bioinformat., Bangkok, Thailand, Sep. 2017, pp. 27–33. doi: 10.1145/3143344.3143355.
  • [19]. F. Artuğer and F. Özkaynak, ”A novel method for performance improvement of chaos-based substitution boxes,” Symmetry, vol. 12, no. 4, p. 571, Apr. 2020.
  • [20]. I. Hussain, T. Shah, H. Mahmood, and M. Gondal, “Construction of S8 Liu J S-boxes and their applications,” Comput. Math. Appl., vol. 64, no. 8, pp. 2450–2458, 2012.
  • [21]. I. Hussain, T. Shah, M. Gondal, W. Khan, and H. Mahmood, “A group theoretic approach to construct cryptographically strong substitution boxes,” Neural Comput. Appl., vol. 23, no. 1, pp. 97–104, 2013.
  • [22]. I. Hussain, T. Shah, and M. Gondal, “A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm,” Nonlinear Dyn., vol. 70, no. 3, pp. 1791–1794, 2012.
  • [23]. M. Khanand, and T. Shah, “An efficient construction of substitution box with fractional chaotic system,” Signal, Image Video Process., vol. 9, no. 6, pp. 1335–1338, 2015.
  • [24]. F. Özkaynak, V. Çelik, and A. B. Özer, “A new S-box construction method based on the fractional-order chaotic Chen system,” Signal, Image Video Process., vol. 11, no. 4, pp. 659–664, 2017.
  • [25]. F. Özkaynak, “An analysis and generation toolbox for chaotic substitu- tion boxes: A case study based on chaotic labyrinth rene thomas sys- tem,” Iranian J. Sci. Technol.-Trans. Elect. Eng., pp. 1–10, 2019. doi: 10.1007/s40998-019-00230-6.
  • [26]. L.Liu, Y.Zhang, and X.Wang, “AnovelmethodforconstructingtheS- box based on spatiotemporal chaotic dynamics,” Appl. Sci., vol. 8, no. 12, p. 2650, 2018. doi: 10.3390/app8122650.
  • [27]. G. Chen, “A novel heuristic method for obtaining S-boxes,” Chaos, Soli- tons Fractals, vol. 36, no. 4, pp. 1028–1036, 2008.
  • [28]. X. Wang, J. Yang, “A novel image encryption scheme of dynamic S-boxes and random blocks based on spatiotemporal chaotic system”, Optik - International Journal for Light and Electron Optics 217 (2020) 164884
  • [29]. N. A. Khan, M. Altaf, F. A. Khan, “Selective encryption of JPEG images with chaotic based novel S-box”. Multimed Tools Appl (2020). https://doi.org/10.1007/s11042-020-10110-5
  • [30]. M. Khan, T. Shah, and M. Gondal, “An efficient technique for the construction of substitution box with chaotic partial differential equation,” Nonlinear Dyn., vol. 73, no. 3, pp. 1795–1801, 2013.
  • [31]. M. Khan and T. Shah, “A construction of novel chaos base nonlinear component of block cipher,” Nonlinear Dyn., vol. 76, no. 1, pp. 377–382, 2014.
  • [32]. H. Liu, A. Kadir, and Y. Niu, “Chaos-based color image block encryption scheme using S-box,” AEU-Int. J. Electron. Commun., vol. 68, no. 7, pp. 676–686, Jul. 2014.
  • [33]. M. Khan, T. Shah, and S. Batool, “A new implementation of chaotic S-boxes in CAPTCHA, “Signal, Image Video Process., vol. 10, no. 2, pp. 293–300, 2016.
  • [34]. G. Tang and X. Liao, “A method for designing dynamical S-boxes based on discretized chaotic map,” Chaos Solitons Fractals, vol. 23, no. 5, pp. 1901–1909, 2005.
  • [35]. F. Özkaynak and S. Yavuz, “Designing chaotic S-boxes based on time- delay chaotic system”, Nonlinear Dyn., vol. 74, no. 3, pp. 551–557, Nov. 2013.
  • [36]. G. Tang, X. Liao, and Y. Chen, “A novel method for designing S-boxes based on chaotic maps” Chaos Solitons Fractals, vol. 23, no. 2, pp. 413–419, 2005.
  • [37]. N. Hematpour and S. Ahadpour, “Execution examination of chaotic S- box dependent on improved PSO algorithm,” Neural Comput. Appl., Aug. 2020, doi: 10.1007/s00521-020-05304-9.
  • [38]. G. Jakimoski and L. Kocarev, “Chaos and cryptography: Block encryption ciphers based on chaotic maps,” IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., vol. 48, no. 2, pp. 163–169, Feb. 2011.
  • [39]. F. Özkaynak and A. B. Özer, “A method for designing strong S-boxes based on chaotic Lorenz system,” Phys. Lett. A, vol. 374, no. 36, pp. 3733–3738, 2010.
  • [40]. M. Khan, T. Shah, H. Mahmood, M. Gondal, and I. Hussain, “A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems,” Nonlinear Dyn., vol. 70, no. 3, pp. 2303–2311, 2012.
  • [41]. G. Chen, Y. Chen, and X. Liao, “An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps”, Chaos Solitons Fractals, vol. 31, no. 3, pp. 571–579, 2007.
  • [42]. M. Khan, T. Shah, H. Mahmood, and M. Gondal, “An efficient method for the construction of block cipher with multi-chaotic systems,” Nonlinear Dyn., vol. 71, no. 3, pp. 489–492, 2013.
  • [43]. M. Khan and Z. Asghar, “A novel construction of substitution box for image encryption applications with Gingerbreadman chaotic map and S8 permutation,” Neural Comput. Appl., vol. 29, no. 4, pp. 993–999, Feb. 2018. doi: 10.1007/s00521-016-2511-5.
  • [44]. S. Jamal, M. Khan, and T. Shah, “A watermarking technique with chaotic fractional S-box transformation,” Wireless Pers. Commun., vol. 90, no. 4, pp. 2033–2049, 2016.
  • [45]. B. B. Cassal-Quiroga and E. Campos-Canton, “Generation of Dynamical S-Boxes for Block Ciphers via Extended Logistic Map,” Mathematical Problems in Engineering Volume 2020, https://doi.org/10.1155/2020/2702653
  • [46]. A. Freyre-Echevarria, I. Martinez-Diaz, C. M. L. Perez, G. Sosa-Gomez, and O. Rojas, “Evolving nonlinear S-boxes with improved theoretical resilience to power attacks,” IEEE Access, vol. 8, pp. 202728–202737, 2020, doi: 10.1109/ACCESS.2020.3035163.
  • [47]. M. Khan, “A novel image encryption scheme based on multiple chaotic S-boxes,” Nonlinear Dyn., vol. 82, no. 1, pp. 527–533, 2015.
  • [48]. M. Khan, T. Shah, and S. Batool, “Construction of S-box based on chaotic Boolean functions and its application in image encryption,” Neural Com- put. Appl., vol. 27, no. 3, pp. 677–685, 2016.
  • [49]. F. Artuğer, F. Özkaynak, "A method for generation of substitution box based on random selection", Egyptian Informatics Journal 23 (1), 127-135 2022, doi: 10.1016/j.eij.2021.08.002
There are 49 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Esin Turan 0000-0001-5951-2762

Mustafa Kemal Özdemir 0000-0001-6798-1868

Barış Karakaya 0000-0001-7995-3901

Fatih Özkaynak 0000-0003-1292-8490

Publication Date March 20, 2022
Submission Date December 8, 2021
Published in Issue Year 2022 Volume: 17 Issue: 1

Cite

APA Turan, E., Özdemir, M. K., Karakaya, B., Özkaynak, F. (2022). A Substitution-Box Structure Based on Solar Panel Data. Turkish Journal of Science and Technology, 17(1), 143-149. https://doi.org/10.55525/tjst.1034034
AMA Turan E, Özdemir MK, Karakaya B, Özkaynak F. A Substitution-Box Structure Based on Solar Panel Data. TJST. March 2022;17(1):143-149. doi:10.55525/tjst.1034034
Chicago Turan, Esin, Mustafa Kemal Özdemir, Barış Karakaya, and Fatih Özkaynak. “A Substitution-Box Structure Based on Solar Panel Data”. Turkish Journal of Science and Technology 17, no. 1 (March 2022): 143-49. https://doi.org/10.55525/tjst.1034034.
EndNote Turan E, Özdemir MK, Karakaya B, Özkaynak F (March 1, 2022) A Substitution-Box Structure Based on Solar Panel Data. Turkish Journal of Science and Technology 17 1 143–149.
IEEE E. Turan, M. K. Özdemir, B. Karakaya, and F. Özkaynak, “A Substitution-Box Structure Based on Solar Panel Data”, TJST, vol. 17, no. 1, pp. 143–149, 2022, doi: 10.55525/tjst.1034034.
ISNAD Turan, Esin et al. “A Substitution-Box Structure Based on Solar Panel Data”. Turkish Journal of Science and Technology 17/1 (March 2022), 143-149. https://doi.org/10.55525/tjst.1034034.
JAMA Turan E, Özdemir MK, Karakaya B, Özkaynak F. A Substitution-Box Structure Based on Solar Panel Data. TJST. 2022;17:143–149.
MLA Turan, Esin et al. “A Substitution-Box Structure Based on Solar Panel Data”. Turkish Journal of Science and Technology, vol. 17, no. 1, 2022, pp. 143-9, doi:10.55525/tjst.1034034.
Vancouver Turan E, Özdemir MK, Karakaya B, Özkaynak F. A Substitution-Box Structure Based on Solar Panel Data. TJST. 2022;17(1):143-9.