Research Article
BibTex RIS Cite
Year 2023, Volume: 18 Issue: 1, 11 - 21, 29.03.2023
https://doi.org/10.55525/tjst.1164010

Abstract

References

  • Zhao S, Li Z, Zhu C, Yang W, Zhang Z, Armstrong DE., Meyers MA. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci Adv 2021; 7(5): eabb3108.
  • Yang YC, Liu C, Lin CY, Xia Z. Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys. Scr Mater 2020; 178: 181-186.
  • Fan AC, Li JH, Tsai MH. On the phase constituents of three CoCrFeNiX (X= Cr, Mo, W) high-entropy alloys after prolonged annealing. Mater Chem Phys 2022; 276: 125431.
  • Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W, Gao, F. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater 2020; 196: 133-143.
  • Daryoush S, Mirzadeh H, Ataie A. Amorphization, mechano-crystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Mater Lett 2022; 307: 131098.
  • Fang W, Chang R, Ji P, Zhang X, Liu B, Qu X, Yin F. Transformation induced plasticity effects of a non-equal molar Co-Cr-Fe-Ni high entropy alloy system. Metals 2018; 8(5): 369-379.
  • Xiong F, Fu R, Li Y, Xu B, Qi X. Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi high-entropy alloy treated by cold-rolling and subsequent annealing. Mater Sci Eng A 2020; 787: 139472.
  • He F, Wang Z, Wu Q, Niu S, Li J, Wang J, Liu CT. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr Mater 2017; 131: 42-46.
  • Feng R, Zhang C, Gao MC, Pei Z, Zhang F, Chen Y, Liaw PK. High-throughput design of high-performance lightweight high-entropy alloys. Nat Commun 2021; 12(1): 1-10.
  • Li Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Mater 2019; 164: 400–412.
  • Zhang Z, Jiang Z, Xie Y, Chan SLI, Liang J, Wang J. Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scr Mater 2022; 207: 114266.
  • Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. Jom 2013; 65(12): 1780-1789.
  • Vaidya M, Karati A, Marshal A, Pradeep KG, Murty BS. Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J Alloys Compd 2019; 770: 1004-1015.
  • Fang W, Yu H, Chang R, Zhang X, Ji P, Liu B, Yin F. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration. Mater Chem Phys 2019; 238: 121897.
  • Zhang T, Zhao RD, Wu FF, Lin SB, Jiang SS, Huang YJ, Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Mater Sci Eng A 2020; 780: 139182.
  • Ji,X, Ji C, Cheng J, Shan Y, Tian S. Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy. Wear 2018; 398: 178-182.
  • Sharma A, Deshmukh SA, Liaw PK, Balasubramanian G. Crystallization kinetics in AlxCrCoFeNi (0≤ x≤ 40) high-entropy alloys. Scr Mater 2017; 141: 54-57.
  • Liu J. Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Phys Lett A 2020; 384: 126516.
  • Johnson DF, Jiang DE, Carter EA. Structure, magnetism, and adhesion at Cr/Fe interfaces from density functional theory. Surf Sci 2007; 601(3): 699-705.
  • Biermair F, Razumovskiy VI, Ressel G. Influence of alloying on thermodynamic properties of AlCoCrFeNiTi high entropy alloys from DFT calculations. Comput Mater Sci 2022; 202: 110952.
  • Niu C, Zaddach AJ, Koch CC, Irving DL. First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J Alloys Compd 2016; 672: 510-520.
  • Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 1965; 140: A1133–A1138.
  • Galvão BR, Viegas LP, Salahub DR, Lourenço MP. Reliability of semiempirical and DFTB methods for the global optimization of the structures of nanoclusters. J Mol Model 2020; 26(11): 1-8.
  • Wahiduzzaman M, Oliveira AF, Philipsen P, Zhechkov L, Van Lenthe E, Witek HA, Heine T. DFTB parameters for the periodic table: Part 1, electronic structure. J Chem Theory Comput 2013; 9(9): 4006-4017.
  • Chopra S. Performance study of the electronic and optical parameters of thermally activated delayed fluorescence nanosized emitters (CCX-I and CCX-II) via DFT, SCC-DFTB and B97-3c approaches. J Nanostruct Chem 2020; 10: 115–124.
  • Slater JC, Koster GF. Simplified LCAO method for the periodic potential problem. Phys Rev 1954; 94(6): 1498.
  • Yildiz AK, Celik FA. Atomic concentration effect on thermal properties during solidification of Pt-Rh alloy: A molecular dynamics simulation. J Cryst Growth 2017; 463: 194-200.
  • Grimme S, Bannwarth C, Shushkov P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z= 1–86). J. Chem Theory Comput 2017; 13(5): 1989-2009.
  • Te Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T. Chemistry with ADF. J Comput Chem 2001; 22(9): 931-967.
  • Fonseca Guerra C, Snijders JG, Te Velde GT, Baerends EJ. Towards an order-N DFT method. Theor Chem Acc 1998; 99(6): 391-403.
  • AMS DFTB 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, 2013 http://www.scm.com.
  • Jain E, Pagare G, Dubey S, Sharma R, Sharma Y. High pressure phonon and thermodynamic properties of Ru based intermetallics: A DFT investigation. J Phys Chem Solids 2018; 122: 246-254.
  • Asadi Y, Nourbakhsh Z. First principle characterization of structural, electronic, mechanical, thermodynamic, linear and nonlinear optical properties of zinc blende InAs, InSb and their InAsxSb1-x ternary alloys. J Phys Chem Solids 2019; 132: 213-221.
  • Arıkan N, İyigör A, Candan A, Uğur Ş, Charifi Z, Baaziz H, Uğur G. Structural, elastic, electronic and phonon properties of scandium-based compounds ScX3 (X= Ir, Pd, Pt and Rh): An ab initio study. Comput Mater Sci 2013; 79: 703-709.
  • Rameshkumar S, Jaiganesh G, Jayalakshmi V. Structural, phonon, elastic, thermodynamic and electronic properties of Mg–X (X= La, Nd, Sm) intermetallics: The first principles study. J Magnes Alloy 2019; 7(1): 166-185.
  • Mukherjee D, Sahoo BD, Joshi KD, Gupta SC. High pressure phase transition in Zr–Ni binary system: A first principle study. J Alloys Compd 2015; 648: 951-957.
  • Jain E, Pagare G, Dubey S, Sharma R, Sharma, Y. High pressure phonon and thermodynamic properties of Ru based intermetallics: A DFT investigation. J Phys Chem Solids 2018; 122: 246-254.
  • Yang JW, An L, Zheng JJ. Structure, mechanical and phonon stability of the Th-Sn system from ab initio. J Nucl Mater 2021; 556: 153187.
  • Zhao Y, Li H, Huang Y. The structure, mechanical, electronic and thermodynamic properties of bcc Zr-Nb alloy: A first principles study. J Alloys Compd 2021; 862: 158029.
  • Guechi A, Chegaar M, Bouhemadou A, Arab F. Structural, mechanical and phonons properties of binary intermetallic compound BaSn3 under pressure. Solid State Commun 2021; 323: 114110.
  • Liu J, Guo X, Lin Q, He Z, An X, Li L, Zhang Y. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci China Mater 2019; 62(6): 853-863.
  • Arıkan N, Charifi Z, Baaziz H, Uğur Ş, Ünver H, Uğur G. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X= Al, Sc, and Ga). J Phys Chem Solids 2015; 77: 126-132.
  • Parlinski K, Li ZQ, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 1997; 78(21): 4063.
  • Wang R, Wang S, Wu X, Liu A. First-principles phonon calculations of thermodynamic properties for ductile rare-earth intermetallic compounds. Intermetallics 2011; 19(10): 1599-1604.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett 1996; 77(18): 3865.
  • Blanco MA, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 2004; 158(1): 57-72. -72.

Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method

Year 2023, Volume: 18 Issue: 1, 11 - 21, 29.03.2023
https://doi.org/10.55525/tjst.1164010

Abstract

In this study, CoCrFe and CoCrFeNi transition high entropy alloys (HEAs) are modelled by extended tight-binding density functional theory (DFT) method. Also, the geometric optimizations, band structures, density of states (DOS), thermodynamic properties and phonon dispersion curves of alloys are investigated to give a detailed information. The results show that the covalent d–d bonding between Fe-Cr is occurred because of strong metallic Cr–Fe interactions. The entropy (S) value increases gradually with the addition of Ni element to the CoCrFe alloy. The heat capacity (Cv) increases due to the harmonic effect of the phonons in the range of 0-400 K and then, close to the classic limit at high temperatures with 0.82 J/mol.K and 0.94 J/mol.K for the CoCrFe and the CoCrFeNi. The alloy systems exhibit metallic properties because the DOS of the metals have a nonzero value at the Fermi energy level. Also, the addition of element Ni to the CoCrFe alloy system causes a decrease in phonon frequencies.

References

  • Zhao S, Li Z, Zhu C, Yang W, Zhang Z, Armstrong DE., Meyers MA. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci Adv 2021; 7(5): eabb3108.
  • Yang YC, Liu C, Lin CY, Xia Z. Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys. Scr Mater 2020; 178: 181-186.
  • Fan AC, Li JH, Tsai MH. On the phase constituents of three CoCrFeNiX (X= Cr, Mo, W) high-entropy alloys after prolonged annealing. Mater Chem Phys 2022; 276: 125431.
  • Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W, Gao, F. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater 2020; 196: 133-143.
  • Daryoush S, Mirzadeh H, Ataie A. Amorphization, mechano-crystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Mater Lett 2022; 307: 131098.
  • Fang W, Chang R, Ji P, Zhang X, Liu B, Qu X, Yin F. Transformation induced plasticity effects of a non-equal molar Co-Cr-Fe-Ni high entropy alloy system. Metals 2018; 8(5): 369-379.
  • Xiong F, Fu R, Li Y, Xu B, Qi X. Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi high-entropy alloy treated by cold-rolling and subsequent annealing. Mater Sci Eng A 2020; 787: 139472.
  • He F, Wang Z, Wu Q, Niu S, Li J, Wang J, Liu CT. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr Mater 2017; 131: 42-46.
  • Feng R, Zhang C, Gao MC, Pei Z, Zhang F, Chen Y, Liaw PK. High-throughput design of high-performance lightweight high-entropy alloys. Nat Commun 2021; 12(1): 1-10.
  • Li Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Mater 2019; 164: 400–412.
  • Zhang Z, Jiang Z, Xie Y, Chan SLI, Liang J, Wang J. Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scr Mater 2022; 207: 114266.
  • Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. Jom 2013; 65(12): 1780-1789.
  • Vaidya M, Karati A, Marshal A, Pradeep KG, Murty BS. Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J Alloys Compd 2019; 770: 1004-1015.
  • Fang W, Yu H, Chang R, Zhang X, Ji P, Liu B, Yin F. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration. Mater Chem Phys 2019; 238: 121897.
  • Zhang T, Zhao RD, Wu FF, Lin SB, Jiang SS, Huang YJ, Eckert J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Mater Sci Eng A 2020; 780: 139182.
  • Ji,X, Ji C, Cheng J, Shan Y, Tian S. Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy. Wear 2018; 398: 178-182.
  • Sharma A, Deshmukh SA, Liaw PK, Balasubramanian G. Crystallization kinetics in AlxCrCoFeNi (0≤ x≤ 40) high-entropy alloys. Scr Mater 2017; 141: 54-57.
  • Liu J. Molecular dynamic study of temperature dependence of mechanical properties and plastic inception of CoCrCuFeNi high-entropy alloy. Phys Lett A 2020; 384: 126516.
  • Johnson DF, Jiang DE, Carter EA. Structure, magnetism, and adhesion at Cr/Fe interfaces from density functional theory. Surf Sci 2007; 601(3): 699-705.
  • Biermair F, Razumovskiy VI, Ressel G. Influence of alloying on thermodynamic properties of AlCoCrFeNiTi high entropy alloys from DFT calculations. Comput Mater Sci 2022; 202: 110952.
  • Niu C, Zaddach AJ, Koch CC, Irving DL. First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J Alloys Compd 2016; 672: 510-520.
  • Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 1965; 140: A1133–A1138.
  • Galvão BR, Viegas LP, Salahub DR, Lourenço MP. Reliability of semiempirical and DFTB methods for the global optimization of the structures of nanoclusters. J Mol Model 2020; 26(11): 1-8.
  • Wahiduzzaman M, Oliveira AF, Philipsen P, Zhechkov L, Van Lenthe E, Witek HA, Heine T. DFTB parameters for the periodic table: Part 1, electronic structure. J Chem Theory Comput 2013; 9(9): 4006-4017.
  • Chopra S. Performance study of the electronic and optical parameters of thermally activated delayed fluorescence nanosized emitters (CCX-I and CCX-II) via DFT, SCC-DFTB and B97-3c approaches. J Nanostruct Chem 2020; 10: 115–124.
  • Slater JC, Koster GF. Simplified LCAO method for the periodic potential problem. Phys Rev 1954; 94(6): 1498.
  • Yildiz AK, Celik FA. Atomic concentration effect on thermal properties during solidification of Pt-Rh alloy: A molecular dynamics simulation. J Cryst Growth 2017; 463: 194-200.
  • Grimme S, Bannwarth C, Shushkov P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z= 1–86). J. Chem Theory Comput 2017; 13(5): 1989-2009.
  • Te Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T. Chemistry with ADF. J Comput Chem 2001; 22(9): 931-967.
  • Fonseca Guerra C, Snijders JG, Te Velde GT, Baerends EJ. Towards an order-N DFT method. Theor Chem Acc 1998; 99(6): 391-403.
  • AMS DFTB 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, 2013 http://www.scm.com.
  • Jain E, Pagare G, Dubey S, Sharma R, Sharma Y. High pressure phonon and thermodynamic properties of Ru based intermetallics: A DFT investigation. J Phys Chem Solids 2018; 122: 246-254.
  • Asadi Y, Nourbakhsh Z. First principle characterization of structural, electronic, mechanical, thermodynamic, linear and nonlinear optical properties of zinc blende InAs, InSb and their InAsxSb1-x ternary alloys. J Phys Chem Solids 2019; 132: 213-221.
  • Arıkan N, İyigör A, Candan A, Uğur Ş, Charifi Z, Baaziz H, Uğur G. Structural, elastic, electronic and phonon properties of scandium-based compounds ScX3 (X= Ir, Pd, Pt and Rh): An ab initio study. Comput Mater Sci 2013; 79: 703-709.
  • Rameshkumar S, Jaiganesh G, Jayalakshmi V. Structural, phonon, elastic, thermodynamic and electronic properties of Mg–X (X= La, Nd, Sm) intermetallics: The first principles study. J Magnes Alloy 2019; 7(1): 166-185.
  • Mukherjee D, Sahoo BD, Joshi KD, Gupta SC. High pressure phase transition in Zr–Ni binary system: A first principle study. J Alloys Compd 2015; 648: 951-957.
  • Jain E, Pagare G, Dubey S, Sharma R, Sharma, Y. High pressure phonon and thermodynamic properties of Ru based intermetallics: A DFT investigation. J Phys Chem Solids 2018; 122: 246-254.
  • Yang JW, An L, Zheng JJ. Structure, mechanical and phonon stability of the Th-Sn system from ab initio. J Nucl Mater 2021; 556: 153187.
  • Zhao Y, Li H, Huang Y. The structure, mechanical, electronic and thermodynamic properties of bcc Zr-Nb alloy: A first principles study. J Alloys Compd 2021; 862: 158029.
  • Guechi A, Chegaar M, Bouhemadou A, Arab F. Structural, mechanical and phonons properties of binary intermetallic compound BaSn3 under pressure. Solid State Commun 2021; 323: 114110.
  • Liu J, Guo X, Lin Q, He Z, An X, Li L, Zhang Y. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci China Mater 2019; 62(6): 853-863.
  • Arıkan N, Charifi Z, Baaziz H, Uğur Ş, Ünver H, Uğur G. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X= Al, Sc, and Ga). J Phys Chem Solids 2015; 77: 126-132.
  • Parlinski K, Li ZQ, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 1997; 78(21): 4063.
  • Wang R, Wang S, Wu X, Liu A. First-principles phonon calculations of thermodynamic properties for ductile rare-earth intermetallic compounds. Intermetallics 2011; 19(10): 1599-1604.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett 1996; 77(18): 3865.
  • Blanco MA, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 2004; 158(1): 57-72. -72.
There are 46 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Fatih Ahmet Çelik 0000-0001-7860-5550

Sefa Kazanç 0000-0002-8896-8571

Publication Date March 29, 2023
Submission Date August 18, 2022
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Çelik, F. A., & Kazanç, S. (2023). Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method. Turkish Journal of Science and Technology, 18(1), 11-21. https://doi.org/10.55525/tjst.1164010
AMA Çelik FA, Kazanç S. Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method. TJST. March 2023;18(1):11-21. doi:10.55525/tjst.1164010
Chicago Çelik, Fatih Ahmet, and Sefa Kazanç. “Investigation of Electronic and Thermal Properties of CoCrFe and CoCrFeNi High Entropy Alloys via Extended Tight-Binding DFT Computational Method”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 11-21. https://doi.org/10.55525/tjst.1164010.
EndNote Çelik FA, Kazanç S (March 1, 2023) Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method. Turkish Journal of Science and Technology 18 1 11–21.
IEEE F. A. Çelik and S. Kazanç, “Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method”, TJST, vol. 18, no. 1, pp. 11–21, 2023, doi: 10.55525/tjst.1164010.
ISNAD Çelik, Fatih Ahmet - Kazanç, Sefa. “Investigation of Electronic and Thermal Properties of CoCrFe and CoCrFeNi High Entropy Alloys via Extended Tight-Binding DFT Computational Method”. Turkish Journal of Science and Technology 18/1 (March 2023), 11-21. https://doi.org/10.55525/tjst.1164010.
JAMA Çelik FA, Kazanç S. Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method. TJST. 2023;18:11–21.
MLA Çelik, Fatih Ahmet and Sefa Kazanç. “Investigation of Electronic and Thermal Properties of CoCrFe and CoCrFeNi High Entropy Alloys via Extended Tight-Binding DFT Computational Method”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 11-21, doi:10.55525/tjst.1164010.
Vancouver Çelik FA, Kazanç S. Investigation of electronic and thermal properties of CoCrFe and CoCrFeNi high entropy alloys via extended tight-binding DFT computational method. TJST. 2023;18(1):11-2.