Research Article
BibTex RIS Cite

An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images

Year 2023, Volume: 18 Issue: 1, 139 - 155, 29.03.2023
https://doi.org/10.55525/tjst.1212513

Abstract

Alzheimer’s, one of the most prevalent varieties of dementia, is a fatal neurological disease for which there is presently no known cure. Early diagnosis of such diseases and classification with computer-aided systems are of great importance in determining the most appropriate treatment. Imaging the soft tissue of the brain with Magnetic Resonance Imaging (MRI) and revealing specific findings is the most effective method of Alzheimer’s diagnosis. A few recent studies using Deep Learning (DL) to diagnose Alzheimer’s Disease (AD) with brain MRI scans have shown promising results. However, the fundamental issue with DL architectures like CNN is the amount of training data that is required. In this study, a hybrid CNN method based on Neighborhood Component Analysis (NCA) is proposed, which aims to classify AD over brain MRI with Machine Learning (ML) algorithms. According to the classification results, DenseNet201, EfficientNet-B0, and AlexNet pre-trained CNN architectures, which are 3 architectures that give the best results as feature extractors, were used as hybrids among 10 different DL architectures. By means of these CNN architectures, the features trained on the dataset and the features obtained by Gradient-weighted Class Activation Mapping (Grad-CAM) are concatenated. The NCA method has been used to optimize all concatenated features. After the stage, the optimized features have been classified with KNN, Ensemble, and SVM algorithms. The proposed hybrid model achieved 99.83% accuracy, 99.88% sensitivity, 99.92% specificity, 99.83% precision, 99.85% F1-measure, and 99.78% Matthews Correlation Coefficient (MCC) results using the Ensemble classifier for the 4-class classification of AD.

References

  • Miller-Thomas, M. M., Sipe, A. L., Benzinger, T. L., McConathy, J., Connolly, S., & Schwetye, K. E. Multimodality review of amyloid-related diseases of the central nervous system. Radiographics 2016; 36(4): 1147.
  • Qiu, C., Kivipelto, M., & Von Strauss, E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci, 2022.
  • Jalbert, J. J., Daiello, L. A., & Lapane, K. L. Dementia of the Alzheimer type. Epidemiol Rev 2008; 30(1): 15-34.
  • Altieri, M., Garramone, F., & Santangelo, G. Functional autonomy in dementia of the Alzheimer’s type, mild cognitive impairment, and healthy aging: a meta-analysis. J Neurol Sci 2021; 42(5): 1773-1783.
  • Fargo, K., & Bleiler, L. Alzheimer’s association report: 2014 Alzheimers disease facts and figures. Alzheimers Dement 2014; 10(2): e47-e92.
  • Bron, E. E., Smits, M., Van Der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens, P., ... & Alzheimer's Disease Neuroimaging Initiative. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage 2015; 111: 562-579.
  • Zuliani, G., Trentini, A., Rosta, V., Guerrini, R., Pacifico, S., Bonazzi, S., ... & Cervellati, C. Increased blood BACE1 activity as a potential common pathogenic factor of vascular dementia and late onset Alzheimer's disease. Sci Rep 2020; 10(1): 1-8.
  • Norfray, J. F., & Provenzale, J. M. Alzheimer's disease: neuropathologic findings and recent advances in imaging. Am J Roentgenol 2004; 182(1): 3-13.
  • Başkaya, O., Kandemir, M., Tepe, M. S., Acar, M., Ünal, G., Yalçıner, Z. B., & Ünay, D. Inter-hemispheric atrophy better correlates with expert ratings than hemispheric cortical atrophy. In 2012 20th Signal Processing and Communications Applications Conference (SIU), April 2012; (pp. 1-4). IEEE.
  • Patel, K. P., Wymer, D. T., Bhatia, V. K., Duara, R., & Rajadhyaksha, C. D. Multimodality imaging of dementia: clinical importance and role of integrated anatomic and molecular imaging. Radiographics 2020; 40(1): 200.
  • Lehmann, M., Koedam, E. L., Barnes, J., Bartlett, J. W., Ryan, N. S., Pijnenburg, Y. A., ... & Fox, N. C. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer's disease. Neurobiol Aging 2012; 33(3): 627-e1.
  • Sahiner, B., Chan, H. P., Petrick, N., Wei, D., Helvie, M. A., Adler, D. D., & Goodsitt, M. M. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 1996; 15(5): 598-610.
  • Adem, K. Diagnosis of breast cancer with Stacked autoencoder and Subspace kNN. Phys. A: Stat. Mech. Appl. 2020; 551: 124591.
  • Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., ... & Alzheimer’s Disease Neuroimaging Initiative. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 2020; 208: 116459.
  • Suriya, M., Chandran, V., & Sumithra, M. G. Enhanced deep convolutional neural network for malarial parasite classification. Int J Comput Appl 2019; 1-10.
  • Hemanth, D. J., Vijila, C. K. S., Selvakumar, A. I., & Anitha, J. Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification. Neurocomputing 2014; 130: 98-107.
  • Liu M, Li F, Yan H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. NeuroImage 2020; 208: 116459.
  • Ben Ahmed, O., Benois-Pineau, J., Allard, M., Ben Amar, C., & Catheline, G. Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimed Tools Appl 2015; 74(4): 1249-1266.
  • Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., ... & Frackowiak, R. S. Automatic classification of MR scans in Alzheimer's disease. Brain 2008; 131(3): 681-689.
  • Farooq A, Anwar S, Awais M, Rehman S. A deep CNN based multi-class classification of Alzheimer's disease using MRI. Paper presented at the 2017 IEEE International Conference on Imaging Systems and Techniques (IST); 2017.
  • Jongkreangkrai, C., Vichianin, Y., Tocharoenchai, C., Arimura, H., & Alzheimer's Disease Neuroimaging Initiative. Computer-aided classification of Alzheimer's disease based on support vector machine with combination of cerebral image features in MRI. In Journal of physics: conference series, March, 2016; 694(1): 012036.
  • Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., & Alzheimer's Disease Neuroimaging Initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage 2015; 104: 398-412.
  • Feng W, Halm-Lutterodt NV, Tang H, et al. Automated MRIbased deep learning model for detection of Alzheimer's disease process. Int J Neural Syst 2020; 30(06): 2050032.
  • Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging 2008; 29(1): 23-30.
  • Cheng, B., Liu, M., Shen, D., Li, Z., & Zhang, D. Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 2017; 15(2): 115-132.
  • Sarraf S, Tofighi G. Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data. Paper presented at the 2016 Future Technologies Conference (FTC); 2016.
  • Billones, C. D., Demetria, O. J. L. D., Hostallero, D. E. D., & Naval, P. C. DemNet: a convolutional neural network for the detection of Alzheimer's disease and mild cognitive impairment. In 2016 IEEE region 10 conference (TENCON), November, 2016; pp. 3724-3727. IEEE.
  • Khagi B, Kwon GR. 3D CNN design for the classification of Alzheimer's disease using brain MRI and PET. IEEE Access 2020; 8:217830-217847.
  • Payan, A., & Montana, G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks 2015; arXiv preprint arXiv:1502.02506.
  • Hosseini-Asl, E., Gimel'farb, G., & El-Baz, A. Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network 2016; arXiv preprint arXiv:1607.00556.
  • Lama RK, Gwak J, Park J-S, Lee S-W. Diagnosis of Alzheimer's disease based on structural MRI images using a regularized extreme learning machine and PCA features. J Healthc Eng 2017; 5485080.
  • Hon, M., & Khan, N. M. Towards Alzheimer's disease classification through transfer learning. In 2017 IEEE International conference on bioinformatics and biomedicine (BIBM), November, 2017; pp. 1166-1169. IEEE.
  • Oh K, Chung Y-C, Kim KW, Kim W-S, Oh I-S. Classification and visualization of Alzheimer's disease using volumetric convolutional neural network and transfer learning. Sci Rep 2019; 9(1): 1-16.
  • Eroglu, Y., Yildirim, M., & Cinar, A. mRMR‐based hybrid convolutional neural network model for classification of Alzheimer's disease on brain magnetic resonance images. Int J Imaging Syst Technol 2022; 32(2): 517-527.
  • Sarvesh D. Alzheimer's Dataset: Available from: https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images, 2019.
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, 2017; pp. 618-626.
  • Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. Grad-CAM: Why did you say that?, 2016; arXiv preprint arXiv:1611.07450.
  • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence 2013; 35(8):1798–1828.
  • Mahendran, A., & Vedaldi, A. Visualizing deep convolutional neural networks using natural pre-images. Int J Comput Vis. 2016; 120(3): 233-255.
  • Yu, X., Zeng, N., Liu, S., & Zhang, Y. D. Utilization of DenseNet201 for diagnosis of breast abnormality. Mach Vis Appl 2019; 30(7): 1135-1144.
  • Tan, M., & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, May, 2019; pp. 6105-6114.
  • Zahangir Alom, M., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Shamima Nasrin, M., ... & Asari, V. K. The history began from AlexNet: a comprehensive survey on deep learning approaches, 2018; arXiv e-prints, arXiv-1803.
  • Jin, M., & Deng, W. Predication of different stages of Alzheimer’s disease using neighborhood component analysis and ensemble decision tree. J Neurosci Methods 2018; 302, 35-41.
  • Banerjee, C., Mukherjee, T., & Pasiliao Jr, E. An empirical study on generalizations of the ReLU activation function. In Proceedings of the 2019 ACM Southeast Conference, April, 2019; pp. 164-167.
  • Özbay, E., Çinar, A., & Özbay, F. A. 3D Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural Networks. Trait du Signal 2021; 38(2): 269-280.
  • Yang, W., Wang, K., & Zuo, W. Neighborhood component feature selection for high-dimensional data. J Comput 2012; 7(1): 161-168.
  • Carr, D. B., Goate, A., Phil, D., & Morris, J. C. Current concepts in the pathogenesis of Alzheimer’s disease. The American journal of medicine 1997; 103(3): 3S-10S.
  • Abuhmed, T., El-Sappagh, S., & Alonso, J. M. Robust hybrid deep learning models for Alzheimer’s progression detection. Knowl.-Based Syst. 2021; 213: 106688.
  • El-Sappagh, S., Saleh, H., Sahal, R., Abuhmed, T., Islam, S. R., Ali, F., & Amer, E. Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data. Future Gener Comput Syst 2021; 115: 680-699.
  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr, C. R., Kawas, C. H., ... & Phelps, C. H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia 2011; 7(3): 263-269.
  • Hirni, D. I., Kivisaari, S. L., Monsch, A. U., & Taylor, K. I. Distinct neuroanatomical bases of episodic and semantic memory performance in Alzheimer’s disease. Neuropsychologia 2013; 51(5): 930-937.
  • Petrella, J. R., Wang, L., Krishnan, S., Slavin, M. J., Prince, S. E., Tran, T. T. T., & Doraiswamy, P. M. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology 2007; 245(1): 224-235.
  • Zhu, X., Schuff, N., Kornak, J., Soher, B., Yaffe, K., Kramer, J. H., ... & Weiner, M. W. Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 2006; 20(2): 77.
  • Özbay, E. An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev 2023; 56: 3291–3318.
  • Özbay, E. Transformatör-Tabanlı Evrişimli Sinir Ağı Modeli Kullanarak Twitter Verisinde Saldırganlık Tespiti. Konya Mühendislik Bilimleri Dergisi 2022; 10(4): 986-1001.
  • Özbay, F. A., & Özbay, E. A new approach for gender detection from voice data: Feature selection with optimization methods. J Fac Eng Archit Gazi Univ 2023; 38(2): 1179-1192.
  • Odusami, M., Maskeliūnas, R., & Damaševičius, R. An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging Sensors 2022; 22(3): 740.
  • Razzak, I., Naz, S., Ashraf, A., Khalifa, F., Bouadjenek, M. R., & Mumtaz, S. Mutliresolutional ensemble PartialNet for Alzheimer detection using magnetic resonance imaging data. Int J Intell Syst 2022; 37(10): 6613-6630.
Year 2023, Volume: 18 Issue: 1, 139 - 155, 29.03.2023
https://doi.org/10.55525/tjst.1212513

Abstract

References

  • Miller-Thomas, M. M., Sipe, A. L., Benzinger, T. L., McConathy, J., Connolly, S., & Schwetye, K. E. Multimodality review of amyloid-related diseases of the central nervous system. Radiographics 2016; 36(4): 1147.
  • Qiu, C., Kivipelto, M., & Von Strauss, E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci, 2022.
  • Jalbert, J. J., Daiello, L. A., & Lapane, K. L. Dementia of the Alzheimer type. Epidemiol Rev 2008; 30(1): 15-34.
  • Altieri, M., Garramone, F., & Santangelo, G. Functional autonomy in dementia of the Alzheimer’s type, mild cognitive impairment, and healthy aging: a meta-analysis. J Neurol Sci 2021; 42(5): 1773-1783.
  • Fargo, K., & Bleiler, L. Alzheimer’s association report: 2014 Alzheimers disease facts and figures. Alzheimers Dement 2014; 10(2): e47-e92.
  • Bron, E. E., Smits, M., Van Der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens, P., ... & Alzheimer's Disease Neuroimaging Initiative. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage 2015; 111: 562-579.
  • Zuliani, G., Trentini, A., Rosta, V., Guerrini, R., Pacifico, S., Bonazzi, S., ... & Cervellati, C. Increased blood BACE1 activity as a potential common pathogenic factor of vascular dementia and late onset Alzheimer's disease. Sci Rep 2020; 10(1): 1-8.
  • Norfray, J. F., & Provenzale, J. M. Alzheimer's disease: neuropathologic findings and recent advances in imaging. Am J Roentgenol 2004; 182(1): 3-13.
  • Başkaya, O., Kandemir, M., Tepe, M. S., Acar, M., Ünal, G., Yalçıner, Z. B., & Ünay, D. Inter-hemispheric atrophy better correlates with expert ratings than hemispheric cortical atrophy. In 2012 20th Signal Processing and Communications Applications Conference (SIU), April 2012; (pp. 1-4). IEEE.
  • Patel, K. P., Wymer, D. T., Bhatia, V. K., Duara, R., & Rajadhyaksha, C. D. Multimodality imaging of dementia: clinical importance and role of integrated anatomic and molecular imaging. Radiographics 2020; 40(1): 200.
  • Lehmann, M., Koedam, E. L., Barnes, J., Bartlett, J. W., Ryan, N. S., Pijnenburg, Y. A., ... & Fox, N. C. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer's disease. Neurobiol Aging 2012; 33(3): 627-e1.
  • Sahiner, B., Chan, H. P., Petrick, N., Wei, D., Helvie, M. A., Adler, D. D., & Goodsitt, M. M. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 1996; 15(5): 598-610.
  • Adem, K. Diagnosis of breast cancer with Stacked autoencoder and Subspace kNN. Phys. A: Stat. Mech. Appl. 2020; 551: 124591.
  • Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., ... & Alzheimer’s Disease Neuroimaging Initiative. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 2020; 208: 116459.
  • Suriya, M., Chandran, V., & Sumithra, M. G. Enhanced deep convolutional neural network for malarial parasite classification. Int J Comput Appl 2019; 1-10.
  • Hemanth, D. J., Vijila, C. K. S., Selvakumar, A. I., & Anitha, J. Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification. Neurocomputing 2014; 130: 98-107.
  • Liu M, Li F, Yan H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. NeuroImage 2020; 208: 116459.
  • Ben Ahmed, O., Benois-Pineau, J., Allard, M., Ben Amar, C., & Catheline, G. Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimed Tools Appl 2015; 74(4): 1249-1266.
  • Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., ... & Frackowiak, R. S. Automatic classification of MR scans in Alzheimer's disease. Brain 2008; 131(3): 681-689.
  • Farooq A, Anwar S, Awais M, Rehman S. A deep CNN based multi-class classification of Alzheimer's disease using MRI. Paper presented at the 2017 IEEE International Conference on Imaging Systems and Techniques (IST); 2017.
  • Jongkreangkrai, C., Vichianin, Y., Tocharoenchai, C., Arimura, H., & Alzheimer's Disease Neuroimaging Initiative. Computer-aided classification of Alzheimer's disease based on support vector machine with combination of cerebral image features in MRI. In Journal of physics: conference series, March, 2016; 694(1): 012036.
  • Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., & Alzheimer's Disease Neuroimaging Initiative. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Neuroimage 2015; 104: 398-412.
  • Feng W, Halm-Lutterodt NV, Tang H, et al. Automated MRIbased deep learning model for detection of Alzheimer's disease process. Int J Neural Syst 2020; 30(06): 2050032.
  • Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging 2008; 29(1): 23-30.
  • Cheng, B., Liu, M., Shen, D., Li, Z., & Zhang, D. Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 2017; 15(2): 115-132.
  • Sarraf S, Tofighi G. Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data. Paper presented at the 2016 Future Technologies Conference (FTC); 2016.
  • Billones, C. D., Demetria, O. J. L. D., Hostallero, D. E. D., & Naval, P. C. DemNet: a convolutional neural network for the detection of Alzheimer's disease and mild cognitive impairment. In 2016 IEEE region 10 conference (TENCON), November, 2016; pp. 3724-3727. IEEE.
  • Khagi B, Kwon GR. 3D CNN design for the classification of Alzheimer's disease using brain MRI and PET. IEEE Access 2020; 8:217830-217847.
  • Payan, A., & Montana, G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks 2015; arXiv preprint arXiv:1502.02506.
  • Hosseini-Asl, E., Gimel'farb, G., & El-Baz, A. Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network 2016; arXiv preprint arXiv:1607.00556.
  • Lama RK, Gwak J, Park J-S, Lee S-W. Diagnosis of Alzheimer's disease based on structural MRI images using a regularized extreme learning machine and PCA features. J Healthc Eng 2017; 5485080.
  • Hon, M., & Khan, N. M. Towards Alzheimer's disease classification through transfer learning. In 2017 IEEE International conference on bioinformatics and biomedicine (BIBM), November, 2017; pp. 1166-1169. IEEE.
  • Oh K, Chung Y-C, Kim KW, Kim W-S, Oh I-S. Classification and visualization of Alzheimer's disease using volumetric convolutional neural network and transfer learning. Sci Rep 2019; 9(1): 1-16.
  • Eroglu, Y., Yildirim, M., & Cinar, A. mRMR‐based hybrid convolutional neural network model for classification of Alzheimer's disease on brain magnetic resonance images. Int J Imaging Syst Technol 2022; 32(2): 517-527.
  • Sarvesh D. Alzheimer's Dataset: Available from: https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images, 2019.
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, 2017; pp. 618-626.
  • Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. Grad-CAM: Why did you say that?, 2016; arXiv preprint arXiv:1611.07450.
  • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence 2013; 35(8):1798–1828.
  • Mahendran, A., & Vedaldi, A. Visualizing deep convolutional neural networks using natural pre-images. Int J Comput Vis. 2016; 120(3): 233-255.
  • Yu, X., Zeng, N., Liu, S., & Zhang, Y. D. Utilization of DenseNet201 for diagnosis of breast abnormality. Mach Vis Appl 2019; 30(7): 1135-1144.
  • Tan, M., & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, May, 2019; pp. 6105-6114.
  • Zahangir Alom, M., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Shamima Nasrin, M., ... & Asari, V. K. The history began from AlexNet: a comprehensive survey on deep learning approaches, 2018; arXiv e-prints, arXiv-1803.
  • Jin, M., & Deng, W. Predication of different stages of Alzheimer’s disease using neighborhood component analysis and ensemble decision tree. J Neurosci Methods 2018; 302, 35-41.
  • Banerjee, C., Mukherjee, T., & Pasiliao Jr, E. An empirical study on generalizations of the ReLU activation function. In Proceedings of the 2019 ACM Southeast Conference, April, 2019; pp. 164-167.
  • Özbay, E., Çinar, A., & Özbay, F. A. 3D Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural Networks. Trait du Signal 2021; 38(2): 269-280.
  • Yang, W., Wang, K., & Zuo, W. Neighborhood component feature selection for high-dimensional data. J Comput 2012; 7(1): 161-168.
  • Carr, D. B., Goate, A., Phil, D., & Morris, J. C. Current concepts in the pathogenesis of Alzheimer’s disease. The American journal of medicine 1997; 103(3): 3S-10S.
  • Abuhmed, T., El-Sappagh, S., & Alonso, J. M. Robust hybrid deep learning models for Alzheimer’s progression detection. Knowl.-Based Syst. 2021; 213: 106688.
  • El-Sappagh, S., Saleh, H., Sahal, R., Abuhmed, T., Islam, S. R., Ali, F., & Amer, E. Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data. Future Gener Comput Syst 2021; 115: 680-699.
  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr, C. R., Kawas, C. H., ... & Phelps, C. H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia 2011; 7(3): 263-269.
  • Hirni, D. I., Kivisaari, S. L., Monsch, A. U., & Taylor, K. I. Distinct neuroanatomical bases of episodic and semantic memory performance in Alzheimer’s disease. Neuropsychologia 2013; 51(5): 930-937.
  • Petrella, J. R., Wang, L., Krishnan, S., Slavin, M. J., Prince, S. E., Tran, T. T. T., & Doraiswamy, P. M. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology 2007; 245(1): 224-235.
  • Zhu, X., Schuff, N., Kornak, J., Soher, B., Yaffe, K., Kramer, J. H., ... & Weiner, M. W. Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord 2006; 20(2): 77.
  • Özbay, E. An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev 2023; 56: 3291–3318.
  • Özbay, E. Transformatör-Tabanlı Evrişimli Sinir Ağı Modeli Kullanarak Twitter Verisinde Saldırganlık Tespiti. Konya Mühendislik Bilimleri Dergisi 2022; 10(4): 986-1001.
  • Özbay, F. A., & Özbay, E. A new approach for gender detection from voice data: Feature selection with optimization methods. J Fac Eng Archit Gazi Univ 2023; 38(2): 1179-1192.
  • Odusami, M., Maskeliūnas, R., & Damaševičius, R. An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging Sensors 2022; 22(3): 740.
  • Razzak, I., Naz, S., Ashraf, A., Khalifa, F., Bouadjenek, M. R., & Mumtaz, S. Mutliresolutional ensemble PartialNet for Alzheimer detection using magnetic resonance imaging data. Int J Intell Syst 2022; 37(10): 6613-6630.
There are 58 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Feyza Altunbey Özbay 0000-0003-0629-6888

Erdal Özbay 0000-0002-9004-4802

Publication Date March 29, 2023
Submission Date November 30, 2022
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Altunbey Özbay, F., & Özbay, E. (2023). An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images. Turkish Journal of Science and Technology, 18(1), 139-155. https://doi.org/10.55525/tjst.1212513
AMA Altunbey Özbay F, Özbay E. An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images. TJST. March 2023;18(1):139-155. doi:10.55525/tjst.1212513
Chicago Altunbey Özbay, Feyza, and Erdal Özbay. “An NCA-Based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-Enhanced Brain MRI Images”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 139-55. https://doi.org/10.55525/tjst.1212513.
EndNote Altunbey Özbay F, Özbay E (March 1, 2023) An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images. Turkish Journal of Science and Technology 18 1 139–155.
IEEE F. Altunbey Özbay and E. Özbay, “An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images”, TJST, vol. 18, no. 1, pp. 139–155, 2023, doi: 10.55525/tjst.1212513.
ISNAD Altunbey Özbay, Feyza - Özbay, Erdal. “An NCA-Based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-Enhanced Brain MRI Images”. Turkish Journal of Science and Technology 18/1 (March 2023), 139-155. https://doi.org/10.55525/tjst.1212513.
JAMA Altunbey Özbay F, Özbay E. An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images. TJST. 2023;18:139–155.
MLA Altunbey Özbay, Feyza and Erdal Özbay. “An NCA-Based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-Enhanced Brain MRI Images”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 139-55, doi:10.55525/tjst.1212513.
Vancouver Altunbey Özbay F, Özbay E. An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images. TJST. 2023;18(1):139-55.