Research Article
BibTex RIS Cite

Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio)

Year 2024, Volume: 19 Issue: 2, 379 - 386, 30.09.2024
https://doi.org/10.55525/tjst.1447886

Abstract

Zinc (Zn) is an essential micro mineral needed for the proper growth and immune function of fish. This investigation was designed to examine the antioxidant role of a fortified diet with different Zn levels in the muscle and liver tissues of carp fry. A four-iso-nitrogen (35% crude protein) practical diet was produced that included graded levels of dietary zinc sulphate as a nutritional zinc resource in the fundamental diet supplemented with increased zinc levels (T1, control, 85 mg Zn kg-1, T2 105 mg Zn kg-1, T3, 125 mg Zn kg-1 and T4, 145 mg Zn kg-1). Even though the SOD and CAT analysis results did not show a linear increase in the increasing Zn ratio in the diets, higher values were obtained compared to the control groups. SOD highest values in T3 for the liver (0.713 ± 0.220 U/ml) and T1 for muscle (0.751 ± 0.144 U/ml), CAT values were highest in T2 for the liver (0.849 ± 0.115 nmol/dk/m) and T2 for muscle (1.059 ± 0.148 nmol/dk/m) was obtained. MDA values were completely higher for the muscle than for the control group, and for the liver, a lower value was obtained in the T2 trial group than in the control group (1.671 ± 0.230 µM). The results of the study showed that Zn contributed significantly to the nutrition of carp fish. It can be concluded that the findings of SOD and CAT analysis endorse the positive contributions of using 105 mg Zn in the diets to promote the antioxidant defense of juvenile carp fish.

References

  • National Research Council (NRC). Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC 2011; (376 + XVI p).
  • Moazenzadeh K, Islami HR, Zamini A, Soltani M. Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, Brandt 1869) juveniles, based on the growth performance and blood parameters. Int Aquat Res 2017; 9: 25-35.
  • Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 2008; 10(2): 263-276.
  • Paski SC, Xu Z. Labile intracellular zinc is associated with 3T3 cell growth. J.Nutr Biochem 2001; 12(11): 655-661.
  • Clegg MS, Keen CL, Donovan SM. Zinc deficiency induced anorexia influences the distribution of serum insulin-like growth factor binding proteins in the rat. Metab 1995; 44(11): 1495-1501.
  • Ekinci D, Ceyhun SB, Aksakal E, Erdoğan O. IGF and GH mRNA levels are suppressed upon exposure to micromolar concentrations of cobalt and zinc in rainbow trout white muscle. Comp Biochem Physiology Part - C Toxicol Pharmacol 2011; 153(3): 336-341.
  • Huang F, Jiang M, Wen H, Wu F, Liu W, Tian J, Yang C. Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquacult 2015; 439: 53-59.
  • Brewer MS. Natural Antioxidants: Sources, Compounds, mechanisms of action, and potential applications. J Food Sci Educ 2011; 10(4): 221-247.
  • Salehi B, Martorell M, Arbiser JL, Sureda A, Martins N, Maurya PK, Sharifi-Rad M, Kumar P, Sharifi-Rad J. Antioxidants: positive or negative actors? Biomol 2018; 8(4): 124.
  • Meriç, İ. Evaluation of sunflower seed meal in feeds for carp: Antinutritional effects on antioxidant defense system, JFAE 2013: 11(2): 1128-1132.
  • Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 1997; 43: 1209-1214.
  • Kalaiselvi T, Panneerselvam C. Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. JNB 1998; 9: 575-581.
  • Ma JJ, Xu ZR, Shao QJ, Xu JZ, Hung Silas SO, Hu WL, Zhuo LY. Effect of dietary supplemental L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea beram, Sparus macrocephalus. Aquac Nutr 2008; 14: 464-471.
  • Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc zinc-dependent NF-κB signalling. Inflammopharma 2017; 25: 11-24.
  • Fazil DM, Hamdi H, Al-Barty A, Zaid AA, Parashar SKS, Das B. Selenium and zinc oxide multinutrient supplementation enhanced growth performance in zebra fish by modulating oxidative stress and growth-related gene expression. Front Bioeng Biotechnol 2021; 9: 1-12.
  • Zagoa MP., Oteiza PI. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic Biol Med 2001; 31(2): 266-274.
  • Ren HT, An HY, Du MX, Zhou J. Effects of zinc adaptation on histological morphology, antioxidant responses, and expression of immune-related genes of grass carp (Ctenopharyngodon idella). Biol Trace Elem Res 2022; 200(12): 5251-5259.
  • Powell SR. The antioxidant properties of Zinc. J Nutr 2000; 130(5): 1447-1454.
  • National Research Council (NRC) (1993). Nutrient Requirements of Fish, Washington, D.C, USA, National Academies Press. 114 p.
  • Song-bo CH, Wei-xing CH, Zhao-ting F. Effect of water temperature on feeding rhythm in common carp (Cyprinus carpio) haematopterus Temminck Schlegel. J Northeast For Univ 2012; 19(1): 57-61.
  • Wang N, Yin Y, Xia C, Li Y, Liu J, Li Y. Zn-enriched Bacillus cereus alleviates Cd toxicity in mirror carp (Cyprinus carpio): Intestinal microbiota, bioaccumulation, and oxidative stress. Biol Trace Elem Res 2021; 200: 1-10.
  • Liu F, Li M, Lu J, La, Z, Tong Y, Wang M. Trace metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and stable isotope ratios (δ13C and δ15N) in Fish from Wulungu Lake, Xinjiang, China. IJERPH 2021; 18: 9007.
  • El-Moselhy KM, Othman A, Abd El-Azem H, El-Metwally M. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea. Egypt J Basic Appl Sci 2014; 1: 97-105.
  • Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández-Cruz ML.Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 2016; 551: 334-343.
  • Loro VL, Jorge MB, da Silva KR, Wood CM. Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat Toxicol 2012; 110: 187-193.
  • Yapici M, Meriç Turgut İ. Farklı doz ve sürelerde levonorgestrel uygulamasının zebra balıklarında (Danio rerio, Hamılton, 1822) antioksidatif metabolizma üzerine etkileri, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 2023, Ankara. PhD thesis, 80 p.
  • Roberts AP, Oris JT. Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol Part - C Toxicol Pharmacol 2004; 138: 221-228.
  • Bagnyukova V, Chahrak OI, Lushchak V. Coordinated response of goldfish antioxidant defences to environmental stress. Aquat Toxicol 2006; 78: 325-331.
  • Dawood MAO, Alagawany M, Sewilam H. The role of zinc microelement in aquaculture: a Review. Biol Trace Elem Res 2021; 200(8): 3841-3853.
  • Wang J, Xiao J, Zhang J, Chen H, Li D, Li L, Cao J, Xie L, Luo Y. Effects of dietary Cu and Zn on the accumulation, oxidative stress and the expressions of immune-related genes in the livers of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020; 100: 198-207.
  • Kanazawa K. Tissue injury induced by dietary products of lipid peroxidation. In: Corongiu, F. (Ed.), Free Radicals and Antioxidants in Nutrition. Richelieu Press, London, 1993; 383-399.
  • Jiang N, Wu F, Huan F, Wen H, Liu W, Tian J, Yang C, Wang W. Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream, Megalobrama amblycephala. Aquacult 2016; 464: 121-128.
  • Luo Z, Tan XY, Zheng JL, Chen QL, Liu CX. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquacult 2011; 319(1-2): 150-155.
  • Ibrahim MS, Mohammady EY, El-Erian MA, Ragaza JA, El-Haroun ER, Hassaan MS. Dietary zinc oxide for growth and immune stimulation of aquatic animal species: A Review. Proc Zool Soc 2023; 76: 59-72.
  • Shiau SY, Jiang C. Dietary zinc requirements of grass shrimp, Penaeus monodon, and effects on immune responses. Aquacult 2006; 254: 476-482.
  • Shyong JS, Sun LT. Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J Nutr 1981; 111: 134-140.
  • Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2015; 2: 702-715.
  • Verma SK, Mishra AK, Suar M, Parashar SKS. In vivo assessment of impact of titanium oxide nanoparticle on zebrafish embryo. AIP Conference Proceedings 2017; 1832, 040030.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Case PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. ESST 2007; 41: 8484-8490.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Envir Pollut 2007;150: 243-250.
  • Wu YP, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Tang L, Kuang SY, Zhou XQ. Influence of dietary zinc on muscle composition, flesh quality and muscle antioxidant status of young grass carp (Ctenopharyngodon idella Val.). Aquac Rep 2015; 45(10): 2360-2373.
  • Musharraf M, Khan MA. Dietary zinc requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac Rep 2019; 503: 489-498.
  • Feng F, Tan LN, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ. Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 2011; 17(4): 875-882.
  • Saddick S, Afifi M, Abu Zinada OA. Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 2017; 24(7): 1672-1678.
  • Mohammadya EY, Soaudyb MR, Abdel-Rahmanc A, Abdel-Tawwabd M, Hassaan MS. Comparative effects of dietary zinc forms on performance, immunity and oxidative stress-related gene expression in Nile tilapia, Oreochromis niloticus. Aquacult 2021; 532: 1-11.
  • Kumar N, Krishnani KK, Singh NP. Effect of zinc on growth performance and cellular metabolic stress of fish exposed to multiple stresses. Fish Physiol Biochem 2020; 46: 315-329.
  • Alvarez RM, Morales AE, Sanz A. Antioxidant defences in fish: biotic and abiotic factors. Rev Fish Biol Fish 2005; 15: 75-88.
  • Yu, HR, Li LY, Shan LL, Gao J., Ma CY, Li X. Effect of supplemental dietary zinc on the growth, body composition and anti-oxidant enzymes of coho salmon (Oncorhynchus kisutch). Aquac Rep 2021; 20: 100744.
  • Avila-Nava A, Pech-Aguilar AG, Lugo R, Medina-Vera I, Guevara-Cruz M, Gutiérrez-Solis A. Oxidative stress biomarkers and their association with mortality among patients infected with SARS-CoV-2 in Mexico. Oxidative Med Cell Longev 2022: 1-8.

Diyetsel Çinkonun Yavru Sazanların (Cyprinus carpio) Antioksidan Parametreleri Üzerine Etkisi

Year 2024, Volume: 19 Issue: 2, 379 - 386, 30.09.2024
https://doi.org/10.55525/tjst.1447886

Abstract

Çinko (Zn), balığın dengeli büyümesi ve metabolizması için gerekli olan önemli bir mikromineraldir. Bu araştırma, sazan yavrularının kas ve karaciğer dokularında farklı Zn düzeylerine sahip zenginleştirilmiş bir diyetin antioksidan rolünü incelemek üzere tasarlanmıştır. Artan çinko seviyeleri ile desteklenen temel diyette besinsel bir çinko kaynağı olarak kademeli seviyelerde diyet çinko sülfat içeren dört izo-nitrojenli (%35 ham protein) pratik bir diyet üretildi (T1, kontrol, 85 mg Zn kg-1, T2 105 mg Zn kg-1, T3, 125 mg Zn kg-1 ve T4, 145 mg Zn kg-1). Çalışma sonunda rasyonlarda artan Zn oranında SOD ve CAT analiz sonuçları doğrusal bir artış göstermese de kontrol gruplarına göre daha yüksek değerler elde edilmiştir. En yüksek SOD değerleri karaciğer için T3’te (0,713±0,220 U/ml) ve T1’de kas için (0,751±0,144 U/ml), CAT değerleri en yüksek karaciğer için T2’de (0,849±0,115 nmol/dk/m) ve T2’de kas için (1,059±0,148 nmol/dk/m) elde edildi. MDA değerleri kas için kontrol grubuna göre tamamen yüksekti ve karaciğer için T2 deneme grubunda kontrol grubuna göre daha düşük bir değer elde edildi (1,671 ± 0,230 µM). SOD ve CAT analiz bulgularının, yavru sazan balıklarının antioksidan savunmasını geliştirmek için rasyonlarda 105 mg Zn kullanımının olumlu katkılarını desteklediği sonucuna varılabilir.

References

  • National Research Council (NRC). Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC 2011; (376 + XVI p).
  • Moazenzadeh K, Islami HR, Zamini A, Soltani M. Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, Brandt 1869) juveniles, based on the growth performance and blood parameters. Int Aquat Res 2017; 9: 25-35.
  • Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 2008; 10(2): 263-276.
  • Paski SC, Xu Z. Labile intracellular zinc is associated with 3T3 cell growth. J.Nutr Biochem 2001; 12(11): 655-661.
  • Clegg MS, Keen CL, Donovan SM. Zinc deficiency induced anorexia influences the distribution of serum insulin-like growth factor binding proteins in the rat. Metab 1995; 44(11): 1495-1501.
  • Ekinci D, Ceyhun SB, Aksakal E, Erdoğan O. IGF and GH mRNA levels are suppressed upon exposure to micromolar concentrations of cobalt and zinc in rainbow trout white muscle. Comp Biochem Physiology Part - C Toxicol Pharmacol 2011; 153(3): 336-341.
  • Huang F, Jiang M, Wen H, Wu F, Liu W, Tian J, Yang C. Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquacult 2015; 439: 53-59.
  • Brewer MS. Natural Antioxidants: Sources, Compounds, mechanisms of action, and potential applications. J Food Sci Educ 2011; 10(4): 221-247.
  • Salehi B, Martorell M, Arbiser JL, Sureda A, Martins N, Maurya PK, Sharifi-Rad M, Kumar P, Sharifi-Rad J. Antioxidants: positive or negative actors? Biomol 2018; 8(4): 124.
  • Meriç, İ. Evaluation of sunflower seed meal in feeds for carp: Antinutritional effects on antioxidant defense system, JFAE 2013: 11(2): 1128-1132.
  • Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 1997; 43: 1209-1214.
  • Kalaiselvi T, Panneerselvam C. Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. JNB 1998; 9: 575-581.
  • Ma JJ, Xu ZR, Shao QJ, Xu JZ, Hung Silas SO, Hu WL, Zhuo LY. Effect of dietary supplemental L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea beram, Sparus macrocephalus. Aquac Nutr 2008; 14: 464-471.
  • Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc zinc-dependent NF-κB signalling. Inflammopharma 2017; 25: 11-24.
  • Fazil DM, Hamdi H, Al-Barty A, Zaid AA, Parashar SKS, Das B. Selenium and zinc oxide multinutrient supplementation enhanced growth performance in zebra fish by modulating oxidative stress and growth-related gene expression. Front Bioeng Biotechnol 2021; 9: 1-12.
  • Zagoa MP., Oteiza PI. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic Biol Med 2001; 31(2): 266-274.
  • Ren HT, An HY, Du MX, Zhou J. Effects of zinc adaptation on histological morphology, antioxidant responses, and expression of immune-related genes of grass carp (Ctenopharyngodon idella). Biol Trace Elem Res 2022; 200(12): 5251-5259.
  • Powell SR. The antioxidant properties of Zinc. J Nutr 2000; 130(5): 1447-1454.
  • National Research Council (NRC) (1993). Nutrient Requirements of Fish, Washington, D.C, USA, National Academies Press. 114 p.
  • Song-bo CH, Wei-xing CH, Zhao-ting F. Effect of water temperature on feeding rhythm in common carp (Cyprinus carpio) haematopterus Temminck Schlegel. J Northeast For Univ 2012; 19(1): 57-61.
  • Wang N, Yin Y, Xia C, Li Y, Liu J, Li Y. Zn-enriched Bacillus cereus alleviates Cd toxicity in mirror carp (Cyprinus carpio): Intestinal microbiota, bioaccumulation, and oxidative stress. Biol Trace Elem Res 2021; 200: 1-10.
  • Liu F, Li M, Lu J, La, Z, Tong Y, Wang M. Trace metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and stable isotope ratios (δ13C and δ15N) in Fish from Wulungu Lake, Xinjiang, China. IJERPH 2021; 18: 9007.
  • El-Moselhy KM, Othman A, Abd El-Azem H, El-Metwally M. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea. Egypt J Basic Appl Sci 2014; 1: 97-105.
  • Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández-Cruz ML.Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 2016; 551: 334-343.
  • Loro VL, Jorge MB, da Silva KR, Wood CM. Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat Toxicol 2012; 110: 187-193.
  • Yapici M, Meriç Turgut İ. Farklı doz ve sürelerde levonorgestrel uygulamasının zebra balıklarında (Danio rerio, Hamılton, 1822) antioksidatif metabolizma üzerine etkileri, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 2023, Ankara. PhD thesis, 80 p.
  • Roberts AP, Oris JT. Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol Part - C Toxicol Pharmacol 2004; 138: 221-228.
  • Bagnyukova V, Chahrak OI, Lushchak V. Coordinated response of goldfish antioxidant defences to environmental stress. Aquat Toxicol 2006; 78: 325-331.
  • Dawood MAO, Alagawany M, Sewilam H. The role of zinc microelement in aquaculture: a Review. Biol Trace Elem Res 2021; 200(8): 3841-3853.
  • Wang J, Xiao J, Zhang J, Chen H, Li D, Li L, Cao J, Xie L, Luo Y. Effects of dietary Cu and Zn on the accumulation, oxidative stress and the expressions of immune-related genes in the livers of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020; 100: 198-207.
  • Kanazawa K. Tissue injury induced by dietary products of lipid peroxidation. In: Corongiu, F. (Ed.), Free Radicals and Antioxidants in Nutrition. Richelieu Press, London, 1993; 383-399.
  • Jiang N, Wu F, Huan F, Wen H, Liu W, Tian J, Yang C, Wang W. Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream, Megalobrama amblycephala. Aquacult 2016; 464: 121-128.
  • Luo Z, Tan XY, Zheng JL, Chen QL, Liu CX. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquacult 2011; 319(1-2): 150-155.
  • Ibrahim MS, Mohammady EY, El-Erian MA, Ragaza JA, El-Haroun ER, Hassaan MS. Dietary zinc oxide for growth and immune stimulation of aquatic animal species: A Review. Proc Zool Soc 2023; 76: 59-72.
  • Shiau SY, Jiang C. Dietary zinc requirements of grass shrimp, Penaeus monodon, and effects on immune responses. Aquacult 2006; 254: 476-482.
  • Shyong JS, Sun LT. Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J Nutr 1981; 111: 134-140.
  • Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2015; 2: 702-715.
  • Verma SK, Mishra AK, Suar M, Parashar SKS. In vivo assessment of impact of titanium oxide nanoparticle on zebrafish embryo. AIP Conference Proceedings 2017; 1832, 040030.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Case PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. ESST 2007; 41: 8484-8490.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Envir Pollut 2007;150: 243-250.
  • Wu YP, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Tang L, Kuang SY, Zhou XQ. Influence of dietary zinc on muscle composition, flesh quality and muscle antioxidant status of young grass carp (Ctenopharyngodon idella Val.). Aquac Rep 2015; 45(10): 2360-2373.
  • Musharraf M, Khan MA. Dietary zinc requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac Rep 2019; 503: 489-498.
  • Feng F, Tan LN, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ. Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 2011; 17(4): 875-882.
  • Saddick S, Afifi M, Abu Zinada OA. Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 2017; 24(7): 1672-1678.
  • Mohammadya EY, Soaudyb MR, Abdel-Rahmanc A, Abdel-Tawwabd M, Hassaan MS. Comparative effects of dietary zinc forms on performance, immunity and oxidative stress-related gene expression in Nile tilapia, Oreochromis niloticus. Aquacult 2021; 532: 1-11.
  • Kumar N, Krishnani KK, Singh NP. Effect of zinc on growth performance and cellular metabolic stress of fish exposed to multiple stresses. Fish Physiol Biochem 2020; 46: 315-329.
  • Alvarez RM, Morales AE, Sanz A. Antioxidant defences in fish: biotic and abiotic factors. Rev Fish Biol Fish 2005; 15: 75-88.
  • Yu, HR, Li LY, Shan LL, Gao J., Ma CY, Li X. Effect of supplemental dietary zinc on the growth, body composition and anti-oxidant enzymes of coho salmon (Oncorhynchus kisutch). Aquac Rep 2021; 20: 100744.
  • Avila-Nava A, Pech-Aguilar AG, Lugo R, Medina-Vera I, Guevara-Cruz M, Gutiérrez-Solis A. Oxidative stress biomarkers and their association with mortality among patients infected with SARS-CoV-2 in Mexico. Oxidative Med Cell Longev 2022: 1-8.
There are 49 citations in total.

Details

Primary Language English
Subjects Shellfish Culture
Journal Section TJST
Authors

Shokri Mustafa 0000-0003-3290-1092

Muzaffer Harlıoğlu 0000-0001-8288-0571

Önder Aksu 0000-0003-3735-6732

Zahra Batool 0000-0002-4393-3527

Publication Date September 30, 2024
Submission Date March 6, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 19 Issue: 2

Cite

APA Mustafa, S., Harlıoğlu, M., Aksu, Ö., Batool, Z. (2024). Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio). Turkish Journal of Science and Technology, 19(2), 379-386. https://doi.org/10.55525/tjst.1447886
AMA Mustafa S, Harlıoğlu M, Aksu Ö, Batool Z. Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio). TJST. September 2024;19(2):379-386. doi:10.55525/tjst.1447886
Chicago Mustafa, Shokri, Muzaffer Harlıoğlu, Önder Aksu, and Zahra Batool. “Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus Carpio)”. Turkish Journal of Science and Technology 19, no. 2 (September 2024): 379-86. https://doi.org/10.55525/tjst.1447886.
EndNote Mustafa S, Harlıoğlu M, Aksu Ö, Batool Z (September 1, 2024) Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio). Turkish Journal of Science and Technology 19 2 379–386.
IEEE S. Mustafa, M. Harlıoğlu, Ö. Aksu, and Z. Batool, “Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio)”, TJST, vol. 19, no. 2, pp. 379–386, 2024, doi: 10.55525/tjst.1447886.
ISNAD Mustafa, Shokri et al. “Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus Carpio)”. Turkish Journal of Science and Technology 19/2 (September 2024), 379-386. https://doi.org/10.55525/tjst.1447886.
JAMA Mustafa S, Harlıoğlu M, Aksu Ö, Batool Z. Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio). TJST. 2024;19:379–386.
MLA Mustafa, Shokri et al. “Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus Carpio)”. Turkish Journal of Science and Technology, vol. 19, no. 2, 2024, pp. 379-86, doi:10.55525/tjst.1447886.
Vancouver Mustafa S, Harlıoğlu M, Aksu Ö, Batool Z. Effect of Dietary Zinc on the Antioxidant Parameters of Juvenile Common Carp (Cyprinus carpio). TJST. 2024;19(2):379-86.