Research Article
BibTex RIS Cite

Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes

Year 2022, Volume: 6 Issue: 2, 37 - 42, 25.11.2022
https://doi.org/10.47748/tjvr.1061413

Abstract

Objective: To investigate the possible effect of N-acetylcysteine (NAC) treatment on rat diabetes-induced liver damage and immune reactivity of asprosin hormone in the liver.
Material-Method: Twenty-eight Wistar albino male rats were used in the study. They were separated into 4 groups as Control (n=7), Diabetes (n=7), Diabetes+NAC (n=7), and NAC (n=7). The rats in all groups were dissected after the treatment, and liver tissues were taken for pathological examination. Tissue sections were stained with immunohistochemistry for detecting asprosin immunoreactivity, hematoxylin-eosin and picrosirius red staining were performed to determine the changes in the tissues.
Result: In the microscopical examination of hematoxylin-eosin-stained sections normal histological hepatic tissues were seen in the Control and NAC groups. Pathological examination of liver tissue from diabetic rats showed marked dissociation, fibrosis, degeneration, inflammation, necrosis, Kupffer cells activation, bile duct proliferation, and congestion. A significant decrease in these lesions was observed in the DM+NAC group. Immunohistochemical studies showed that asprosin immunoreactivity was increased in the DM group in a significant manner. Asprosin expression was observed to be significantly reduced in the DM+NAC group in comparison to the DM group.
Conclusion: Our findings show that NAC administration reduces liver damage in diabetic rats and can be used to reduce/eliminate the negative effects of diabetes in rat liver tissue.

Supporting Institution

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • Al-Ani IM, Abired AN, Mustafa BE, Wahab EN, Azzubaidi MS. Effect of flaxseed extract on the liver histological structure in streptozotocin induced diabetic rats. Int Med J Malaysia. 2017; 16(1):91-98.
  • Alqasim AA, Noureldin EE, Hammadi SH, Esheba GE. Effect of melatonin versus vitamin D as antioxidant and hepatoprotective agents in STZ-induced diabetic rats. J Diabetes Metab Disord. 2017; 16(1):1-8.
  • Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol American Journal of Physiology-Gastrointestinal and Liver Physiology. 2000; 279(2):245-249.
  • Atta AH, Saad SA, Atta SA, et al. Cucumis sativus and Cucurbita maxima extract attenuate diabetes-induced hepatic and pancreatic injury in a rat model. J Physiol Pharmacol. 2020; 71(4):507-518.
  • Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012; 16(2):267-271.
  • Begum Q, Mahboob T. Silver nanoparticles protects streptozotocin-induced hepatotoxicity: A biochemical and histopathological approach [published online ahead of print 17 Aug, 2020]. Res Sq. doi:10.21203/rs.3.rs-45335/v1.
  • Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000; 275(4):2247-2250.
  • Gajdosik A, Gajdosikova A, Stefek M, Navarova J, Hozova R. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen. Physiol. Biophys. 1999; 18:54-62.
  • Hasselbaink DM, Glatz JF, Luiken JJ, Roemen TH, Van der Vusse GJ. Ketone bodies disturb fatty acid handling in isolated cardiomyocytes derived from control and diabetic rats. Biochem J. 2003; 371(3):753-760.
  • Hong RT, Xu JM, Mei Q. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol. 2009; 15(12):1452-1458.
  • Ivanova OM, Drozhzhyna GI, Troichenko LF, Vit VV, Abramova AB, Lotosh TD. Efficacy of topical N-acetylcysteine as a part of multicomponent treatment for severe dry eye syndrome. Oftalmol Zh. 2020; 494(3):3-8.
  • King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004; 122(4):333-338.
  • Kocaman N, Kuloğlu T. Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. [published online ahead of print June 5, 2020]. Tissue Cell. doi: 10.1016/j.tice.2020.101397.
  • Komolkriengkrai M, Nopparat J, Vongvatcharanon U, Anupunpisit V, Khimmaktong W. Effect of glabridin on collagen deposition in liver and amelioration of hepatocyte destruction in diabetes rats. Exp Ther Med. 2019; 18(2):1164-1174.
  • Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021; 17(1):11-30.
  • Lei S, Liu Y, Liu H, Yu H, Wang H, Xia Z. Effects of N-acetylcysteine on nicotinamide dinucleotide phosphate oxidase activation and antioxidant status in heart, lung, liver and kidney in streptozotocin-induced diabetic rats. Yonsei Med J. 2012; 53(2):294-303.
  • Lo L, McLennan SV, Williams PF, et al. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. J Hepatol. 2011; 55(2):435-444.
  • Mabuchi A, Mullaney I, Sheard P, et al. Role of hepatic stellate cells in the early phase of liver regeneration in rat: formation of tight adhesion to parenchymal cells. Comp Hepatol. 2004; 3(1):1-4.
  • Mahajan MS, Upasani CD, Upaganlawar AB, Gulecha VS. Renoprotective effect of co-enzyme Q10 and n-acetylcysteine on streptozotocin-induced diabetic nephropathy in rats. Int J Diabetes Clin Res. 2020; 7(2):1-12.
  • Manna P, Das J, Ghosh J, Sil PC. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radic Biol Med. 2010; 48(11):1465-1484.
  • Morsy MA, Abdalla AM, Mahmoud AM, Abdelwahab SA, Mahmoud ME. Protective effects of curcumin, α-lipoic acid, and N-acetylcysteine against carbon tetrachloride-induced liver fibrosis in rats. J Physiol Biochem. 2012; 68(1):29-35.
  • Muftakhov MV, Shchukin PV. Resonance electron capture by Cysteine and n-acetylcysteine molecules. Russ J Phys Chem A. 2020; 94(1):102-109.
  • Nagai T, Kanasaki M, Srivastava SP, et al. N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. [published online ahead of print March, 24, 2014]. Biomed Res Int. doi: 10.1155/2014/696475
  • Özdamar K. Paket programlar ile istatistiksel veri analizi (çok değişkenli analizler). Eskişehir: Kaan Kitabevi; 2004. s. 574.
  • Rahal A, Kumar A, Singh V, at al. Oxidative stress, prooxidants, and antioxidants: the interplay. [published online ahead of print Jan 23, 2014]. Biomed Res Int. doi: 10.1155/2014/761264
  • Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell. 2016; 165(3):566-579.
  • Rosa LR, Kaga AK, Barbanera PO, Queiroz PM, do Carmo NO, Fernandes AA. Beneficial effects of N-acetylcysteine on hepatic oxidative stress in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 2018; 96(4):412-418. Samad-Noshahr Z, Hadjzadeh MA, Moradi-Marjaneh R, Khajavi-Rad A. The hepatoprotective effects of fennel seeds extract and trans Anethole in streptozotocin induced liver injury in rats. Food Sci Nutr. 2021; 9(2):1121-1131.
  • Sanchez SS, Abregú AV, Aybar MJ, Riera AS. Changes in liver gangliosides in streptozotocin-induced diabetic rats. Cell Biol Int. 2000; 24(12):897-904.
  • Sarkar S, Das D, Wann SB, Kalita J, Manna P. Is diabetes mellitus a wrongdoer to COVID-19 severity? [published online ahead of print Jul 1, 2021]. Diabetes Res Clin Pract. doi: 10.1016/j.diabres.2021.108936
  • Shang J, Wang Q, Zhang H, et al. The relationship between diabetes mellitus and COVID-19 prognosis: a retrospective cohort study in Wuhan, China. Am J Med. 2021; 134(1):6-14.
  • Shanmugam KR, Mallikarjuna K, Kesireddy N, Reddy KS. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011; 49(4):893-897.
  • Sharkawi SM, El-Shoura EA, Abo-Youssef AM, Hemeida RA. The potential hepatoprotective effects of lovastatin combined with oral hypoglycemic agents in streptozotocin-induced diabetes in rats. Immunopharmacol Immunotoxicol. 2020; 42(2):165-73.
  • Su-Ming H, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981; 29(4):577-80.
  • World Health Organization. Diabetes. Available at: https://www.who.int/health-topics/diabetes#tab=tab_1. Accessed July 13, 2021.
  • Yalcin A, Yumrutas O, Kuloglu T, et al. Hepatoprotective properties for Salvia cryptantha extract on carbon tetrachloride-induced liver injury. Cell Mol Biol. 2017; 63(12):56-62. Yalçın A, Gürel A. Effects of N-acetylcysteine on kidney tissue, matrix metalloproteinase-2, irisin and oxidative stress in a diabetes mellitus model. Biotech Histochem. 2021; 96(8): 616-622.
  • Yaman T, Doğan A. Streptozotosin ile diyabet oluşturulan sıçanlarda meşe palamudu (Quercus branti Lindl.) ekstraktların karaciğer ve pankreası koruyucu etkileri. Dicle Üniv Vet Fak Derg. 2016; (1):7-15.
  • Yang-en S, Petpiboolthai H, Khimmakthong W, Anupunpisit V. Effect of curcumin on collagen deposition and tissue reorganization in liver of diabetic rats. J Med Assoc Thai. 2016; 99(8):118-129.
Year 2022, Volume: 6 Issue: 2, 37 - 42, 25.11.2022
https://doi.org/10.47748/tjvr.1061413

Abstract

References

  • Al-Ani IM, Abired AN, Mustafa BE, Wahab EN, Azzubaidi MS. Effect of flaxseed extract on the liver histological structure in streptozotocin induced diabetic rats. Int Med J Malaysia. 2017; 16(1):91-98.
  • Alqasim AA, Noureldin EE, Hammadi SH, Esheba GE. Effect of melatonin versus vitamin D as antioxidant and hepatoprotective agents in STZ-induced diabetic rats. J Diabetes Metab Disord. 2017; 16(1):1-8.
  • Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol American Journal of Physiology-Gastrointestinal and Liver Physiology. 2000; 279(2):245-249.
  • Atta AH, Saad SA, Atta SA, et al. Cucumis sativus and Cucurbita maxima extract attenuate diabetes-induced hepatic and pancreatic injury in a rat model. J Physiol Pharmacol. 2020; 71(4):507-518.
  • Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012; 16(2):267-271.
  • Begum Q, Mahboob T. Silver nanoparticles protects streptozotocin-induced hepatotoxicity: A biochemical and histopathological approach [published online ahead of print 17 Aug, 2020]. Res Sq. doi:10.21203/rs.3.rs-45335/v1.
  • Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000; 275(4):2247-2250.
  • Gajdosik A, Gajdosikova A, Stefek M, Navarova J, Hozova R. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen. Physiol. Biophys. 1999; 18:54-62.
  • Hasselbaink DM, Glatz JF, Luiken JJ, Roemen TH, Van der Vusse GJ. Ketone bodies disturb fatty acid handling in isolated cardiomyocytes derived from control and diabetic rats. Biochem J. 2003; 371(3):753-760.
  • Hong RT, Xu JM, Mei Q. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol. 2009; 15(12):1452-1458.
  • Ivanova OM, Drozhzhyna GI, Troichenko LF, Vit VV, Abramova AB, Lotosh TD. Efficacy of topical N-acetylcysteine as a part of multicomponent treatment for severe dry eye syndrome. Oftalmol Zh. 2020; 494(3):3-8.
  • King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004; 122(4):333-338.
  • Kocaman N, Kuloğlu T. Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. [published online ahead of print June 5, 2020]. Tissue Cell. doi: 10.1016/j.tice.2020.101397.
  • Komolkriengkrai M, Nopparat J, Vongvatcharanon U, Anupunpisit V, Khimmaktong W. Effect of glabridin on collagen deposition in liver and amelioration of hepatocyte destruction in diabetes rats. Exp Ther Med. 2019; 18(2):1164-1174.
  • Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021; 17(1):11-30.
  • Lei S, Liu Y, Liu H, Yu H, Wang H, Xia Z. Effects of N-acetylcysteine on nicotinamide dinucleotide phosphate oxidase activation and antioxidant status in heart, lung, liver and kidney in streptozotocin-induced diabetic rats. Yonsei Med J. 2012; 53(2):294-303.
  • Lo L, McLennan SV, Williams PF, et al. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. J Hepatol. 2011; 55(2):435-444.
  • Mabuchi A, Mullaney I, Sheard P, et al. Role of hepatic stellate cells in the early phase of liver regeneration in rat: formation of tight adhesion to parenchymal cells. Comp Hepatol. 2004; 3(1):1-4.
  • Mahajan MS, Upasani CD, Upaganlawar AB, Gulecha VS. Renoprotective effect of co-enzyme Q10 and n-acetylcysteine on streptozotocin-induced diabetic nephropathy in rats. Int J Diabetes Clin Res. 2020; 7(2):1-12.
  • Manna P, Das J, Ghosh J, Sil PC. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radic Biol Med. 2010; 48(11):1465-1484.
  • Morsy MA, Abdalla AM, Mahmoud AM, Abdelwahab SA, Mahmoud ME. Protective effects of curcumin, α-lipoic acid, and N-acetylcysteine against carbon tetrachloride-induced liver fibrosis in rats. J Physiol Biochem. 2012; 68(1):29-35.
  • Muftakhov MV, Shchukin PV. Resonance electron capture by Cysteine and n-acetylcysteine molecules. Russ J Phys Chem A. 2020; 94(1):102-109.
  • Nagai T, Kanasaki M, Srivastava SP, et al. N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. [published online ahead of print March, 24, 2014]. Biomed Res Int. doi: 10.1155/2014/696475
  • Özdamar K. Paket programlar ile istatistiksel veri analizi (çok değişkenli analizler). Eskişehir: Kaan Kitabevi; 2004. s. 574.
  • Rahal A, Kumar A, Singh V, at al. Oxidative stress, prooxidants, and antioxidants: the interplay. [published online ahead of print Jan 23, 2014]. Biomed Res Int. doi: 10.1155/2014/761264
  • Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell. 2016; 165(3):566-579.
  • Rosa LR, Kaga AK, Barbanera PO, Queiroz PM, do Carmo NO, Fernandes AA. Beneficial effects of N-acetylcysteine on hepatic oxidative stress in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 2018; 96(4):412-418. Samad-Noshahr Z, Hadjzadeh MA, Moradi-Marjaneh R, Khajavi-Rad A. The hepatoprotective effects of fennel seeds extract and trans Anethole in streptozotocin induced liver injury in rats. Food Sci Nutr. 2021; 9(2):1121-1131.
  • Sanchez SS, Abregú AV, Aybar MJ, Riera AS. Changes in liver gangliosides in streptozotocin-induced diabetic rats. Cell Biol Int. 2000; 24(12):897-904.
  • Sarkar S, Das D, Wann SB, Kalita J, Manna P. Is diabetes mellitus a wrongdoer to COVID-19 severity? [published online ahead of print Jul 1, 2021]. Diabetes Res Clin Pract. doi: 10.1016/j.diabres.2021.108936
  • Shang J, Wang Q, Zhang H, et al. The relationship between diabetes mellitus and COVID-19 prognosis: a retrospective cohort study in Wuhan, China. Am J Med. 2021; 134(1):6-14.
  • Shanmugam KR, Mallikarjuna K, Kesireddy N, Reddy KS. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011; 49(4):893-897.
  • Sharkawi SM, El-Shoura EA, Abo-Youssef AM, Hemeida RA. The potential hepatoprotective effects of lovastatin combined with oral hypoglycemic agents in streptozotocin-induced diabetes in rats. Immunopharmacol Immunotoxicol. 2020; 42(2):165-73.
  • Su-Ming H, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981; 29(4):577-80.
  • World Health Organization. Diabetes. Available at: https://www.who.int/health-topics/diabetes#tab=tab_1. Accessed July 13, 2021.
  • Yalcin A, Yumrutas O, Kuloglu T, et al. Hepatoprotective properties for Salvia cryptantha extract on carbon tetrachloride-induced liver injury. Cell Mol Biol. 2017; 63(12):56-62. Yalçın A, Gürel A. Effects of N-acetylcysteine on kidney tissue, matrix metalloproteinase-2, irisin and oxidative stress in a diabetes mellitus model. Biotech Histochem. 2021; 96(8): 616-622.
  • Yaman T, Doğan A. Streptozotosin ile diyabet oluşturulan sıçanlarda meşe palamudu (Quercus branti Lindl.) ekstraktların karaciğer ve pankreası koruyucu etkileri. Dicle Üniv Vet Fak Derg. 2016; (1):7-15.
  • Yang-en S, Petpiboolthai H, Khimmakthong W, Anupunpisit V. Effect of curcumin on collagen deposition and tissue reorganization in liver of diabetic rats. J Med Assoc Thai. 2016; 99(8):118-129.
There are 37 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section 2022 Volume 6 Number 2
Authors

Hasan Aydın 0000-0002-1955-6178

Alper Yalçın 0000-0002-8975-1008

Ahmet Türk 0000-0003-0903-3522

Orhan Özdiller This is me 0000-0002-2179-436X

Atila Yoldaş 0000-0002-7807-0661

Hikmet Keleş 0000-0002-2308-0811

Muhammad Nasir Bhaya 0000-0001-7696-3039

Early Pub Date November 21, 2022
Publication Date November 25, 2022
Submission Date February 11, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Aydın, H., Yalçın, A., Türk, A., Özdiller, O., et al. (2022). Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes. Turkish Journal of Veterinary Research, 6(2), 37-42. https://doi.org/10.47748/tjvr.1061413
AMA Aydın H, Yalçın A, Türk A, Özdiller O, Yoldaş A, Keleş H, Bhaya MN. Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes. TJVR. November 2022;6(2):37-42. doi:10.47748/tjvr.1061413
Chicago Aydın, Hasan, Alper Yalçın, Ahmet Türk, Orhan Özdiller, Atila Yoldaş, Hikmet Keleş, and Muhammad Nasir Bhaya. “Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats With Experimentally-Induced Diabetes”. Turkish Journal of Veterinary Research 6, no. 2 (November 2022): 37-42. https://doi.org/10.47748/tjvr.1061413.
EndNote Aydın H, Yalçın A, Türk A, Özdiller O, Yoldaş A, Keleş H, Bhaya MN (November 1, 2022) Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes. Turkish Journal of Veterinary Research 6 2 37–42.
IEEE H. Aydın, A. Yalçın, A. Türk, O. Özdiller, A. Yoldaş, H. Keleş, and M. N. Bhaya, “Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes”, TJVR, vol. 6, no. 2, pp. 37–42, 2022, doi: 10.47748/tjvr.1061413.
ISNAD Aydın, Hasan et al. “Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats With Experimentally-Induced Diabetes”. Turkish Journal of Veterinary Research 6/2 (November 2022), 37-42. https://doi.org/10.47748/tjvr.1061413.
JAMA Aydın H, Yalçın A, Türk A, Özdiller O, Yoldaş A, Keleş H, Bhaya MN. Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes. TJVR. 2022;6:37–42.
MLA Aydın, Hasan et al. “Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats With Experimentally-Induced Diabetes”. Turkish Journal of Veterinary Research, vol. 6, no. 2, 2022, pp. 37-42, doi:10.47748/tjvr.1061413.
Vancouver Aydın H, Yalçın A, Türk A, Özdiller O, Yoldaş A, Keleş H, Bhaya MN. Investigation of the Effects of N-Acetylcysteine on Asprosin Hormone Activity and Liver Tissues in Rats with Experimentally-Induced Diabetes. TJVR. 2022;6(2):37-42.