Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 25 - 31, 28.03.2025
https://doi.org/10.47748/tjvr.1539053

Abstract

References

  • Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool. 2004; 71(1):5-16.
  • Aytek Aİ. Antik Anadolu toplumlarının geometrik morfometrik karşılaştırılmaları. Thesis (PhD), Ankara University, Institute of Social Sciences, Department of Anthropology; 2016
  • Bertram JE, Biewener AA. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. J Morphol. 1990; 204(2):157-169.
  • Doherty BJ, Heggeness MH. Quantitative anatomy of the second cervical vertebra. Spine. 1995; 20(5):513-517.
  • Dursun N. Veteriner anatomi I. Ankara: Medisan Yayınevi; 2007.
  • Demiraslan Y, Dayan MO. Veteriner sistemik anatomi. 1st ed., Ankara: Nobel Tıp Kitabevleri; 2021.
  • Demiraslan Y, Demircioğlu İ, Güzel BC. Geometric analysis of mandible using semilandmark in Hamdani and Awassi sheep. Ankara Üniv Vet Fak Derg. 2024; 71(1):19-25.
  • Ewer RF. Publishing country: The carnivores. Cornell University Press; 1998.
  • Fortin M, Wilk N, Dobrescu O, Martel P, Santaguida C, Weber MH. Relationship between cervical muscle morphology evaluated by MRI, cervical muscle strength and functional outcomes in patients with degenerative cervical myelopathy. Musculoskelet Sci Pract . 2018; 38:1-7.
  • Gosavi S, Swamy V. Morphometric study of the Axis vertebra. Eur J Anat. 2012; 16(2):98-103.
  • Gündemir O, Koungoulos L, Szara T, Duro S, Spataru MC, Michaud M, Onar V. Cranial morphology of Balkan and West Asian livestock guardian dogs. J Anat. 2023; 243(6):951-959.
  • Gündemir O, Özkan E, Dayan MO, Aydoğdu S. Sexual analysis in Turkey (Meleagris gallopavo) neurocranium using geometricmorphometric methods. Turk J Vet Anim Sci. 2020; 44(3):681-687.
  • Havill LM, Mahaney MC, Binkley T, Specker B. Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res. 2007; 22(5):737-746.
  • Johnson DR, O'Higgins P, McAndrew TJ. The relationship between age, size and shape in the upper thoracic vertebrae of the mouse. J Anat. 1988; 161:73.
  • Kikuchi Y, Ogihara N. Functional anatomy and adaptation of the third to sixth thoracic vertebrae in primates using three-dimensional geometric morphometrics. Primates. 2021; 62(5):845-855.
  • Manuta N, Gündemir O, Yalin EE, Karabağli M, Uçmak ZG, Dal GE, Gürbüz İ. Pelvis shape analysis with geometric morphometry in crossbreed cats. Anat Histol Embryol. 2023; 52(4):611-618.
  • Mavrych V, Bolgova O, Ganguly P, Kashchenko S. (2014). Age-related changes of lumbar vertebral body morphometry. Austin J Anat. 2014; 1(3): 7.
  • Mayoux-Benhamou MA, Wybier M, Revel M. Strength and cross-sectional area of the dorsal neck muscles. Ergonomics. 1989; 32(5):513-518.
  • Mølgaard C, Thomsen BL, Michaelsen KF. Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta paediatr. 1998; 87(5): 494-499.
  • Mosekilde L. Age-related changes in bone mass, structure, and strength effects of loading. Z Rheumatol . 2000; 59:1-9.
  • Reno PL. Genetic and developmental basis for parallel evolution and its signifcance for hominoid evolution. Evol Anthropol Issues News Rev. 2014; 23:188-200.
  • Rolfe S, Pieper S, Porto A, Diamond K, Winchester J, Shan S, Kirveslahti H, Boyer D, Summers A, Maga AM. SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol Evol. 2021; 12(10): 1816-1825.
  • Singla M, Goel P, Ansari MS, Ravi KS, Khare S. Morphometric analysis of axis and its clinical significance-an anatomical study of Indian human axis vertebrae. J Clin Diagn Res. 2015; 9(5):4-9.
  • Şengül G, Kadıoğlu HH. Morphometric anatomy of the atlas and axis vertebrae. Turk Neurosurg. 2006; 16(2): 69-76.
  • Van Valkenburgh B. Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol . 1987; 7(2):162-182.
  • Xu R, Nadaud MC, Ebraheim NA, Yeasting RA. Morphology of the second cervical vertebra and the posterior projection of the C2 pedicle axis. Spine. 1995; 20(3):259-263.
  • Zileli M, Özer F. Omurilik ve omurga cerrahisi. İzmir: Meta Basım Matbaacılık Hizmetleri. 2002; 739-746.

Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry

Year 2025, Volume: 9 Issue: 1, 25 - 31, 28.03.2025
https://doi.org/10.47748/tjvr.1539053

Abstract

Objective:Axis is an important bone due to the structures it is adjacent to and the contribution it makes to the bony structure of the neck. This bone is also responsible for carrying the neck. Since there is not any similar study in the literature, we wanted to investigate the three-dimensional geometrical morphometry of the second vertebrae cervicales, specifically the axis. For this purpose, 17 axis bones from 8 different domestic species belonging to the carnivora family were analysed.
Materials and Methods:CT images of the bones were converted into three-dimensional (3D) bone surfaces. A total of 102 landmarks were applied to the images recorded with the generalised procrustes method. Principal Component Analysis (PCA) was performed with SlicerMorph programme. As a result of this analysis, shape variations of the bones were analysed. In addition, Procrustes Distance and Centroid size values of the bones were measured with the same programme. These values were processed into SPSS programme and the effect of age and weight on size was investigated by regression analysis.
Results:The shape changes of the bones were analysed from five different faces (cranial, caudal, lateral, dorsal, ventral). As a result of these analyses, shape variations were observed and these variations were explained. As a result of PCA, PC1 explained 21.04%, PC2 explained 13.6% and PC3 explained 12% of the total variation. In addition, age and weight were statistically significant with centroid size as a result of regression analysis.
Conclusion: Additionally, age and weight were found to be statistically significant in relation to centroid size in the regression analysis. In conclusion, the dimensional development and morphological changes of the vertebrae are significantly influenced by both age and body weight.

References

  • Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool. 2004; 71(1):5-16.
  • Aytek Aİ. Antik Anadolu toplumlarının geometrik morfometrik karşılaştırılmaları. Thesis (PhD), Ankara University, Institute of Social Sciences, Department of Anthropology; 2016
  • Bertram JE, Biewener AA. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. J Morphol. 1990; 204(2):157-169.
  • Doherty BJ, Heggeness MH. Quantitative anatomy of the second cervical vertebra. Spine. 1995; 20(5):513-517.
  • Dursun N. Veteriner anatomi I. Ankara: Medisan Yayınevi; 2007.
  • Demiraslan Y, Dayan MO. Veteriner sistemik anatomi. 1st ed., Ankara: Nobel Tıp Kitabevleri; 2021.
  • Demiraslan Y, Demircioğlu İ, Güzel BC. Geometric analysis of mandible using semilandmark in Hamdani and Awassi sheep. Ankara Üniv Vet Fak Derg. 2024; 71(1):19-25.
  • Ewer RF. Publishing country: The carnivores. Cornell University Press; 1998.
  • Fortin M, Wilk N, Dobrescu O, Martel P, Santaguida C, Weber MH. Relationship between cervical muscle morphology evaluated by MRI, cervical muscle strength and functional outcomes in patients with degenerative cervical myelopathy. Musculoskelet Sci Pract . 2018; 38:1-7.
  • Gosavi S, Swamy V. Morphometric study of the Axis vertebra. Eur J Anat. 2012; 16(2):98-103.
  • Gündemir O, Koungoulos L, Szara T, Duro S, Spataru MC, Michaud M, Onar V. Cranial morphology of Balkan and West Asian livestock guardian dogs. J Anat. 2023; 243(6):951-959.
  • Gündemir O, Özkan E, Dayan MO, Aydoğdu S. Sexual analysis in Turkey (Meleagris gallopavo) neurocranium using geometricmorphometric methods. Turk J Vet Anim Sci. 2020; 44(3):681-687.
  • Havill LM, Mahaney MC, Binkley T, Specker B. Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res. 2007; 22(5):737-746.
  • Johnson DR, O'Higgins P, McAndrew TJ. The relationship between age, size and shape in the upper thoracic vertebrae of the mouse. J Anat. 1988; 161:73.
  • Kikuchi Y, Ogihara N. Functional anatomy and adaptation of the third to sixth thoracic vertebrae in primates using three-dimensional geometric morphometrics. Primates. 2021; 62(5):845-855.
  • Manuta N, Gündemir O, Yalin EE, Karabağli M, Uçmak ZG, Dal GE, Gürbüz İ. Pelvis shape analysis with geometric morphometry in crossbreed cats. Anat Histol Embryol. 2023; 52(4):611-618.
  • Mavrych V, Bolgova O, Ganguly P, Kashchenko S. (2014). Age-related changes of lumbar vertebral body morphometry. Austin J Anat. 2014; 1(3): 7.
  • Mayoux-Benhamou MA, Wybier M, Revel M. Strength and cross-sectional area of the dorsal neck muscles. Ergonomics. 1989; 32(5):513-518.
  • Mølgaard C, Thomsen BL, Michaelsen KF. Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta paediatr. 1998; 87(5): 494-499.
  • Mosekilde L. Age-related changes in bone mass, structure, and strength effects of loading. Z Rheumatol . 2000; 59:1-9.
  • Reno PL. Genetic and developmental basis for parallel evolution and its signifcance for hominoid evolution. Evol Anthropol Issues News Rev. 2014; 23:188-200.
  • Rolfe S, Pieper S, Porto A, Diamond K, Winchester J, Shan S, Kirveslahti H, Boyer D, Summers A, Maga AM. SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol Evol. 2021; 12(10): 1816-1825.
  • Singla M, Goel P, Ansari MS, Ravi KS, Khare S. Morphometric analysis of axis and its clinical significance-an anatomical study of Indian human axis vertebrae. J Clin Diagn Res. 2015; 9(5):4-9.
  • Şengül G, Kadıoğlu HH. Morphometric anatomy of the atlas and axis vertebrae. Turk Neurosurg. 2006; 16(2): 69-76.
  • Van Valkenburgh B. Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol . 1987; 7(2):162-182.
  • Xu R, Nadaud MC, Ebraheim NA, Yeasting RA. Morphology of the second cervical vertebra and the posterior projection of the C2 pedicle axis. Spine. 1995; 20(3):259-263.
  • Zileli M, Özer F. Omurilik ve omurga cerrahisi. İzmir: Meta Basım Matbaacılık Hizmetleri. 2002; 739-746.
There are 27 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section 2025 Volume 9 Number 1
Authors

Ermiş Özkan 0000-0002-5000-5075

Ece Oktay 0000-0002-3117-7875

Buket Çakar 0009-0009-4076-7568

Yusuf Altundağ 0000-0001-6364-7512

Gülsün Pazvant 0000-0001-5986-3992

Barış Can Güzel 0000-0002-2504-120X

Early Pub Date March 26, 2025
Publication Date March 28, 2025
Submission Date August 26, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Özkan, E., Oktay, E., Çakar, B., Altundağ, Y., et al. (2025). Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry. Turkish Journal of Veterinary Research, 9(1), 25-31. https://doi.org/10.47748/tjvr.1539053
AMA Özkan E, Oktay E, Çakar B, Altundağ Y, Pazvant G, Güzel BC. Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry. TJVR. March 2025;9(1):25-31. doi:10.47748/tjvr.1539053
Chicago Özkan, Ermiş, Ece Oktay, Buket Çakar, Yusuf Altundağ, Gülsün Pazvant, and Barış Can Güzel. “Three-Dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape Variation, Allometry”. Turkish Journal of Veterinary Research 9, no. 1 (March 2025): 25-31. https://doi.org/10.47748/tjvr.1539053.
EndNote Özkan E, Oktay E, Çakar B, Altundağ Y, Pazvant G, Güzel BC (March 1, 2025) Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry. Turkish Journal of Veterinary Research 9 1 25–31.
IEEE E. Özkan, E. Oktay, B. Çakar, Y. Altundağ, G. Pazvant, and B. C. Güzel, “Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry”, TJVR, vol. 9, no. 1, pp. 25–31, 2025, doi: 10.47748/tjvr.1539053.
ISNAD Özkan, Ermiş et al. “Three-Dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape Variation, Allometry”. Turkish Journal of Veterinary Research 9/1 (March 2025), 25-31. https://doi.org/10.47748/tjvr.1539053.
JAMA Özkan E, Oktay E, Çakar B, Altundağ Y, Pazvant G, Güzel BC. Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry. TJVR. 2025;9:25–31.
MLA Özkan, Ermiş et al. “Three-Dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape Variation, Allometry”. Turkish Journal of Veterinary Research, vol. 9, no. 1, 2025, pp. 25-31, doi:10.47748/tjvr.1539053.
Vancouver Özkan E, Oktay E, Çakar B, Altundağ Y, Pazvant G, Güzel BC. Three-dimensional (3D) Geometric Morphometrics of the Carnivora Axis: Shape variation, Allometry. TJVR. 2025;9(1):25-31.