Research Article
BibTex RIS Cite

UNDERSTANDING THE INITIAL REACTIONS OF TURKISH TWITTER USERS DURING THE COVID-19 PANDEMIC

Year 2021, Volume: 11 Issue: 1, 20 - 41, 01.01.2021

Abstract

This study aims to evaluate the initial reactions of Turkish social media users to the spread of the COVID-19 disease and the consequent pandemic in Turkey. The primary purpose of this investigation is to provide readers with an understanding of the transformative effects of social media on the dissemination of information and feelings, especially in moments of crisis. Content analysis approach was used for the analysis of the selected tweets with codes and themes. The themes broadly identified by the study included personal opinions, humour or sarcasm, requests and questions, emotional state, information sharing, marketing and spam. The initial reactions of Turkish Twitter users on COVID-19 related primarily to sharing personal thoughts, which included the articulation of personal opinions and the critique of the views of others. The second significant response thread involved humour and sarcasm. The third theme is requests and questions including warnings, suggestions, demands and questions.

Thanks

Acknowledgement: We are grateful to Ege University Planning and Monitoring Coordination of Organizational Development and Directorate of Library and Documantaion for their support in editing and proofreading service of this study.

References

  • Almond, D. (2006). Is the 1918 ınfluenza pandemic over? Long-term effects of In Utero ınfluenza exposure in the post-1940 U.S. population. Journal of Political Economy, 114(4), 672-712.
  • Antheunis, M. L. Schouten, A. P. Valkenburg, P. M. & Peter, J. (2012). Interactive uncertainty reduction strategies and verbal affection in computer-mediated communication. Communication Research, 39(6), 757-780. doi: 10.1177/0093650211410420.
  • Austin, L., Fisher Liu, B., & Jin, Y. (2012). How audiences seek out crisis information: Exploring the social-mediated crisis communication model. Journal of Applied Communication Research, 40(2), 188-207.
  • Aziz, A. (2014). Sosyal bilimlerde araştırma yöntemleri ve teknikleri (9th ed.). Ankara: Nobel Akademik Yayıncılık.
  • Bazarova, N. N., & Choi, Y. H. (2014). Self-disclosure ın social media: Extending the functional approach to disclosure motivations and characteristics on social network sites. Journal of Communication, 64, 635-657.
  • Bazarova, N. N., Taft, J.G., Choi, Y.H., & Cosley, D. (2012). Managing ımpressions and relationships on Facebook: self-presentational and relational concerns revealed through the analysis of language style. Journal of Language and Social Psychology, 32(2), 121–141.
  • Barrett, L. F. (2006). Solving the emotion paradox: categorization and the experience of emotion. Personality, and Social Psychology Review, 10(1), 20 - 46.
  • Berger, C. R., & Calabrese, R. J. (1975). Some explorations in ınitial ınteraction and beyond: toward a developmental theory of ınterpersonal communication. Human Communication Research, 1(2), 99–112, doi: 10.1111/j.1468-2958.1975.tb00258.x.
  • Beyens, I., Frison, E., & Eggermont, S. (2016). “I don’t want to miss a thing”: Adolescents’ fear of missing out and ıts relationship to adolescents’ social needs, Facebook use, and Facebook related stress, Computers in Human Behavior, 64:1(8),1-32, doi: 10.1016/j.chb.2016.05.083.
  • Blackwell, D., Leaman, C., Tramposch, R., Osborne, C., & Liss, M. (2017). Extraversion, neuroticism, attachment style and fear of missing out as predictors of social media use and addiction. Personality And Individual Differences, 116, 69-72.
  • Brooks, F. J. (1993). Revising the conquest of Mexico: smallpox, sources, and populations. The Journal of Interdisciplinary History, 24(1):1-29.
  • Bruns, A., & Stieglitz, S. (2012). Quantitative approaches to comparing communication patterns on Twitter. Journal of Technology in Human Services, 30(3-4), 160-185. Boin, A., Hart, P., Stern, E., & Sundelius, B. (2005). The politics of crisis management: Public leadership under pressure. New York: Cambridge University Press.
  • Boin, A., Rhinard, M., & Ekengren, M. (2014). Managing transboundary crises: The emergence of European Union capacity, Journal of Contingencies and Crisis Management, 22(3), 130- 142.
  • Bollen, J., Mao, H., & Pepe, A. (2011). Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In Fifth International AAAI Conference on Weblogs and Social Media.
  • Bortee, D., & Seltzer, T. (2009). Dialogic strategies and outcomes: An analysis of environmental advocacy groups’ Facebook profiles, Public Relations Review, 35(3), 317 – 319.
  • Burgess, J., & Bruns, A. (2012). Twitter archives and the challenges of" Big Social Data" for media and communication research. M/C Journal, 15(5). Castells, M. (2016). İletişim gücü. İstanbul: İstanbul Bilgi Üniversitesi.
  • Cheng, S. T., & Siankam, B. (2009). The ımpacts of the HIV/AIDS pandemic and socioeconomic development on the living arrangements of older persons in Sub-saharan Africa: A country-level analysis, Am J Community Psychol, 44, 136–147, doi: 10.1007/s10464-009-9243-y.
  • Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PloS one, 5(11).
  • Choi, Y., & Lin, Y. H. (2009). Consumer responses to Mattel product recalls posted on online bulletin boards: Exploring two types of emotion. Journal of Public Relations Research, 21(2), 198-207.
  • Crook, B., Glowacki, E. M., Suran, M., K. Harris, J., & Bernhardt, J. M. (2016). Content analysis of a live CDC Twitter chat during the 2014 Ebola outbreak. Communication Research Reports, 33(4), 349-355.
  • Falkheimer, J. (2013). Transboundary and cultural crisis communication, (ed.) Handbuch Krisenmanagement. Wiesbaden: Springer Fachmedien Wiesbaden, Pp. 211-225. Festinger, L. (1957). A theory of cognitive dissonance. California: Stanford University Press.
  • Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76, 378-382.
  • Fraustino, J. D., Liu, B., & Jin, Y. (2012). Social media use during disasters: a review of the knowledge base and gaps, Final Report to Human Factors/Behavioral Sciences Division, Science and Technology Directorate, U.S. Department of Homeland Security. College Park, MD: START.
  • Gasparini, R. Amicizia D. Lai, P. L., & Panatto, D. (2012). Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly, Human Vaccines & Immunotherapeutics, 8(1), 21-28, doi: 10.4161/hv.8.1.17622
  • Gerlitz, C., & Rieder, B. (2013). Mining one percent of Twitter: Collections, baselines, sampling. M/C Journal, 16(2).
  • Griffiths, M. D. (2012). Facebook addiction: Concerns, criticisms, and recommendations. Psychological Reports, 110, 518–520.
  • Gottfried, J., & Shearer, E. (2016) News use across social media platforms 2016. Pew Research Center. Retrieved from http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/. Access Date: 05.05.2020.
  • Guidry, J. P., Jin, Y., Orr, C. A., Messner, M., & Meganck, S. (2017). Ebola on Instagram and Twitter: How health organizations address the health crisis in their social media engagement. Public Relations Review, 43(3), 477-486.
  • Han, M. C., & Kim, Y. (2016). Can social networking sites be e-commerce platforms?. Pan-Pacific Journal of Business Research, 7(1), 24-39.
  • Hays, N. J. (2005). Epidemics and pandemics their ımpacts of human history, ABC CLIO, Oxford, England.
  • Hogan, B., Quan-Haase, A. (2010). Persistence and change in social media. Bulletin of Science, Technology and Society, 30(5), 309–315.
  • Hosseini, P. Sokolow, S. H. Vandegrift, K. J. Kilpatrick, A. M., & Daszak, P. (2010). Predictive power of air travel and socio-economic data for early pandemic spread, PLoS One. 5(9): e12763, DOI: 10.1371/journal.pone.0012763.
  • Howell, G. (2015). MH370 all lives lost : the ‘Black Swan’ disaster confirmed with a 26 word txt. Asia Pacific Public Relations Journal, 16(1), 8-21.
  • Hughes, A. L., & Palen, L. (2009). Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, 6(3-4), 248-260.
  • Kim, K.S., Sin, S., C. J., & Tsai, T. I. (2014). Individual differences in social media use for information seeking. The Journal of Academic Librarianship, 40, 171–178. doi: 10.1016/j.acalib.2014.03.001.

UNDERSTANDING THE INITIAL REACTIONS OF TURKISH TWITTER USERS DURING THE COVID-19 PANDEMIC

Year 2021, Volume: 11 Issue: 1, 20 - 41, 01.01.2021

Abstract

Bu çalışma, Türkiye'deki sosyal medya kullanıcılarının COVID-19 hastalığının yayılmasına ve bunun sonucunda ortaya çıkan pandemiye karşı ilk tepkilerini değerlendirmeyi amaçlamaktadır. Bu araştırmanın temel amacı, okuyuculara, özellikle kriz anlarında sosyal medyanın bilgi ve duyguların yayılması üzerindeki dönüştürücü etkilerini anlamalarını sağlamaktır. Seçilen tweetlerin kod ve temalarla analizinde içerik analizi yaklaşımı kullanılmıştır. Çalışma ile geniş bir şekilde tanımlanan temalar arasında kişisel görüşler, mizah veya alay, istek ve sorular, duygusal durum, bilgi paylaşımı, pazarlama ve spam yer almaktadır. Türk Twitter kullanıcılarının COVID-19 hakkındaki ilk tepkileri, kişisel fikirlerin ifade edilmesi ve başkalarının görüşlerinin eleştirisini içeren kişisel düşüncelerin paylaşılmasıyla ilgilidir. İkinci önemli tepki dizisi mizah ve alay olarak saptanmış, üçüncü öne çıkan tema, uyarı, öneri, talep ve soruları içeren tweetler olarak bulunmuştur.

References

  • Almond, D. (2006). Is the 1918 ınfluenza pandemic over? Long-term effects of In Utero ınfluenza exposure in the post-1940 U.S. population. Journal of Political Economy, 114(4), 672-712.
  • Antheunis, M. L. Schouten, A. P. Valkenburg, P. M. & Peter, J. (2012). Interactive uncertainty reduction strategies and verbal affection in computer-mediated communication. Communication Research, 39(6), 757-780. doi: 10.1177/0093650211410420.
  • Austin, L., Fisher Liu, B., & Jin, Y. (2012). How audiences seek out crisis information: Exploring the social-mediated crisis communication model. Journal of Applied Communication Research, 40(2), 188-207.
  • Aziz, A. (2014). Sosyal bilimlerde araştırma yöntemleri ve teknikleri (9th ed.). Ankara: Nobel Akademik Yayıncılık.
  • Bazarova, N. N., & Choi, Y. H. (2014). Self-disclosure ın social media: Extending the functional approach to disclosure motivations and characteristics on social network sites. Journal of Communication, 64, 635-657.
  • Bazarova, N. N., Taft, J.G., Choi, Y.H., & Cosley, D. (2012). Managing ımpressions and relationships on Facebook: self-presentational and relational concerns revealed through the analysis of language style. Journal of Language and Social Psychology, 32(2), 121–141.
  • Barrett, L. F. (2006). Solving the emotion paradox: categorization and the experience of emotion. Personality, and Social Psychology Review, 10(1), 20 - 46.
  • Berger, C. R., & Calabrese, R. J. (1975). Some explorations in ınitial ınteraction and beyond: toward a developmental theory of ınterpersonal communication. Human Communication Research, 1(2), 99–112, doi: 10.1111/j.1468-2958.1975.tb00258.x.
  • Beyens, I., Frison, E., & Eggermont, S. (2016). “I don’t want to miss a thing”: Adolescents’ fear of missing out and ıts relationship to adolescents’ social needs, Facebook use, and Facebook related stress, Computers in Human Behavior, 64:1(8),1-32, doi: 10.1016/j.chb.2016.05.083.
  • Blackwell, D., Leaman, C., Tramposch, R., Osborne, C., & Liss, M. (2017). Extraversion, neuroticism, attachment style and fear of missing out as predictors of social media use and addiction. Personality And Individual Differences, 116, 69-72.
  • Brooks, F. J. (1993). Revising the conquest of Mexico: smallpox, sources, and populations. The Journal of Interdisciplinary History, 24(1):1-29.
  • Bruns, A., & Stieglitz, S. (2012). Quantitative approaches to comparing communication patterns on Twitter. Journal of Technology in Human Services, 30(3-4), 160-185. Boin, A., Hart, P., Stern, E., & Sundelius, B. (2005). The politics of crisis management: Public leadership under pressure. New York: Cambridge University Press.
  • Boin, A., Rhinard, M., & Ekengren, M. (2014). Managing transboundary crises: The emergence of European Union capacity, Journal of Contingencies and Crisis Management, 22(3), 130- 142.
  • Bollen, J., Mao, H., & Pepe, A. (2011). Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In Fifth International AAAI Conference on Weblogs and Social Media.
  • Bortee, D., & Seltzer, T. (2009). Dialogic strategies and outcomes: An analysis of environmental advocacy groups’ Facebook profiles, Public Relations Review, 35(3), 317 – 319.
  • Burgess, J., & Bruns, A. (2012). Twitter archives and the challenges of" Big Social Data" for media and communication research. M/C Journal, 15(5). Castells, M. (2016). İletişim gücü. İstanbul: İstanbul Bilgi Üniversitesi.
  • Cheng, S. T., & Siankam, B. (2009). The ımpacts of the HIV/AIDS pandemic and socioeconomic development on the living arrangements of older persons in Sub-saharan Africa: A country-level analysis, Am J Community Psychol, 44, 136–147, doi: 10.1007/s10464-009-9243-y.
  • Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PloS one, 5(11).
  • Choi, Y., & Lin, Y. H. (2009). Consumer responses to Mattel product recalls posted on online bulletin boards: Exploring two types of emotion. Journal of Public Relations Research, 21(2), 198-207.
  • Crook, B., Glowacki, E. M., Suran, M., K. Harris, J., & Bernhardt, J. M. (2016). Content analysis of a live CDC Twitter chat during the 2014 Ebola outbreak. Communication Research Reports, 33(4), 349-355.
  • Falkheimer, J. (2013). Transboundary and cultural crisis communication, (ed.) Handbuch Krisenmanagement. Wiesbaden: Springer Fachmedien Wiesbaden, Pp. 211-225. Festinger, L. (1957). A theory of cognitive dissonance. California: Stanford University Press.
  • Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76, 378-382.
  • Fraustino, J. D., Liu, B., & Jin, Y. (2012). Social media use during disasters: a review of the knowledge base and gaps, Final Report to Human Factors/Behavioral Sciences Division, Science and Technology Directorate, U.S. Department of Homeland Security. College Park, MD: START.
  • Gasparini, R. Amicizia D. Lai, P. L., & Panatto, D. (2012). Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly, Human Vaccines & Immunotherapeutics, 8(1), 21-28, doi: 10.4161/hv.8.1.17622
  • Gerlitz, C., & Rieder, B. (2013). Mining one percent of Twitter: Collections, baselines, sampling. M/C Journal, 16(2).
  • Griffiths, M. D. (2012). Facebook addiction: Concerns, criticisms, and recommendations. Psychological Reports, 110, 518–520.
  • Gottfried, J., & Shearer, E. (2016) News use across social media platforms 2016. Pew Research Center. Retrieved from http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/. Access Date: 05.05.2020.
  • Guidry, J. P., Jin, Y., Orr, C. A., Messner, M., & Meganck, S. (2017). Ebola on Instagram and Twitter: How health organizations address the health crisis in their social media engagement. Public Relations Review, 43(3), 477-486.
  • Han, M. C., & Kim, Y. (2016). Can social networking sites be e-commerce platforms?. Pan-Pacific Journal of Business Research, 7(1), 24-39.
  • Hays, N. J. (2005). Epidemics and pandemics their ımpacts of human history, ABC CLIO, Oxford, England.
  • Hogan, B., Quan-Haase, A. (2010). Persistence and change in social media. Bulletin of Science, Technology and Society, 30(5), 309–315.
  • Hosseini, P. Sokolow, S. H. Vandegrift, K. J. Kilpatrick, A. M., & Daszak, P. (2010). Predictive power of air travel and socio-economic data for early pandemic spread, PLoS One. 5(9): e12763, DOI: 10.1371/journal.pone.0012763.
  • Howell, G. (2015). MH370 all lives lost : the ‘Black Swan’ disaster confirmed with a 26 word txt. Asia Pacific Public Relations Journal, 16(1), 8-21.
  • Hughes, A. L., & Palen, L. (2009). Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, 6(3-4), 248-260.
  • Kim, K.S., Sin, S., C. J., & Tsai, T. I. (2014). Individual differences in social media use for information seeking. The Journal of Academic Librarianship, 40, 171–178. doi: 10.1016/j.acalib.2014.03.001.
There are 35 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Azra Kardelen Nazlı 0000-0003-0565-1278

Celal Kocaömer 0000-0001-9593-1761

Miray Beşbudak 0000-0002-7610-6368

Nahit Erdem Köker 0000-0002-8622-865X

Publication Date January 1, 2021
Submission Date October 17, 2020
Acceptance Date October 26, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Nazlı, A. K., Kocaömer, C., Beşbudak, M., Köker, N. E. (2021). UNDERSTANDING THE INITIAL REACTIONS OF TURKISH TWITTER USERS DURING THE COVID-19 PANDEMIC. Turkish Online Journal of Design Art and Communication, 11(1), 20-41.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png