Enformasyon ve iletişim teknolojilerindeki hızlı gelişmeler çevrim içi davranışları anlamak için büyük veri setlerine erişme imkanını da beraberinde getirdi. İnternetin yaygınlaşmasıyla birlikte çok daha fazla sayıda birey, topluluk ve kurum sosyal medya platformlarında dijital sosyal etkileşimler kurmaya başladı. Bu dönüşüm sayesinde, yapılandırılmamış ya da yarı-yapılandırılmış yapıdaki ve çok zengin bir içerik çeşitliliğine sahip olan sosyal büyük veri (Big Social Data) her an birikerek artıyor. Dijital sosyal ağların, büyük oranda internet kullanıcıları tarafından oluşturulan içerik yığınını doğal ortamında gözlemleme imkanı sağlaması araştırmacılara çok çeşitli konularda çalışma gerçekleştirmek için ideal bir ortam sağlıyor. Bruns(2020: 65)’un da belirttiği gibi büyük sosyal veri üzerine yapılan çalışmalar aynı zamanda iletişim, kültürel çalışmalar, sosyal bilimler ve bilgisayar bilimi gibi çalışma alanlarının arasında yeni bağlantılar kuruyor. Büyük sosyal veri üzerine yapılan çalışmalarda, içeriğin yapısı, çeşitliliği, erişim imkanları ve karşılıklılık şartı aramayan kullanıcılar arası ilişki yapısı nedeniyle Twitter araştırma yapmak için ideal bir platform olarak ön plana çıkıyor. Bu çalışmada R programlama dili kullanılarak Twitter verisinin toplanması, verinin analize hazır hale getirilmesi, temizlenen veriye otomatik metin analizi ve sosyal ağ analizi yapılması adımlarını örnekler ile açıklayan bir rehber oluşturulması amaçlanmıştır.
Programlamalı Sosyal Bilimler Programlamalı İletişim Araştırmaları R Twitter Sosyal Ağ analizi Metin Analizi Computational Social Science Computational Communication Research Social Network Analysis Text Analysis.
-
-
-
The constant development in information and communication technologies has enabled the opportunity to access and analyze large datasets to understand human behavior in the digital era. Following the widespread use of the internet, social media platforms have become the most popular environments where individuals, communities, and institutions interact. It has led to the emergence of extensive amounts of unstructured or semi-structured big social data that is very rich in content variety. Digital social networks provide an opportunity to observe the online behavior of users in a natural environment which makes it an ideal place for researchers to study a wide variety of topics. Bruns (2020:65) states that big social data approaches connect core disciplines that use big data methods -media, communication and cultural studies, the social sciences, and computer science. Twitter stands out as an ideal platform for research on big social data because of the structure and diversity of the content, data access opportunities, and the structure of the relations between users that does not require reciprocity. This study aims to provide a guideline for data collection from Twitter, data cleaning, social network analysis, and automated text analysis with R programming language.
Computational Social Science Computational Communication Research Social Network Analysis Text Analysis.
-
Primary Language | Turkish |
---|---|
Subjects | Communication and Media Studies |
Journal Section | Makaleler |
Authors | |
Project Number | - |
Publication Date | January 1, 2023 |
Submission Date | November 21, 2022 |
Acceptance Date | December 22, 2022 |
Published in Issue | Year 2023 Volume: 13 Issue: 1 |