Araştırma Makalesi
BibTex RIS Kaynak Göster

AN INVESTIGATION OF PRE-SERVICE TEACHERS' CRITERIA FOR EVALUATING MATHEMATICS PROBLEMS

Yıl 2024, Cilt: 14 Sayı: 1, 427 - 441, 31.01.2024
https://doi.org/10.24315/tred.1390162

Öz

How pre-service teachers evaluate the problems will contribute to their understanding and internalization of the teaching profession. In this context, this study aimed to examine pre-service mathematics teachers' approaches to evaluating mathematical problems. Case study, one of the qualitative research methods, was used in the study. The research was conducted with 20 students studying in the fourth grade of middle school mathematics teaching at a state university in a province of Turkey. In the data collection process of this study, a form containing student responses was distributed to the pre-service teachers and they were asked to evaluate their students' responses to problem posing activities. Participants were not given any information about the evaluation criteria in the literature and were left free to evaluate student responses. Content analysis was used to analyze the data obtained in the study. The findings obtained from the participants showed that they utilized 6 main criteria when evaluating students' responses to problem posing activities. These main criteria are; is it a problem?, suitability for problem posing situation, solvability, contextuality, language usage and complexity. While the criteria of suitability for problem posing and solvability were used by all pre-service teachers, the frequency of use of the other criteria by pre-service teachers varied. In line with these results, it was thought that pre-service teachers did not have an evaluation schema in their minds. For this reason, it was suggested that pre-service teachers should be trained on evaluating mathematical problems.

Kaynakça

  • Aydoğdu, A. S., & Türnüklü, E. (2023). Geometride problem kurmaya dayalı çalışmaların yaratıcılıkla olan ilişkisinin incelenmesi. Trakya Eğitim Dergisi, 13(2), 1434-1450.
  • Bonotto, C., & Santo, L. D. (2015). On the relationship between problem posing, problem solving, and creativity in the primary school. F. M. Singer, N. F. Ellerton & J. Cai (Eds.), Mathematical problem posing. From research to effective practice (p. 103-123).
  • Brown, S. I., & Walter, M. I. (1983). The art of problem posing. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Cai, J., & Hwang, S. (2002). Generalised and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421.
  • Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research, 102, 101420.
  • Cai, J., & Hwang, S. (2023). Making mathematics challenging through problem posing in the classroom. In Mathematical Challenges For All (pp. 115-145). Cham: Springer International Publishing.
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics, 105, 287-301.
  • Cankoy, O., & Özder, H. (2017). Generalizability theory research on developing a scoring rubric to assess primary school students' problem posing skills. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2423-2439.
  • Chen, L., Van Dooren, W., Chen, Q., & Verschaffel, L. (2011). An investigation on chinese teachers’realistic problem posing and problem solving ability and beliefs. International Journal of Science and Mathematics Education, 9, 919-948.
  • Chen, L., Van Dooren, W., & Verschaffel, L. (2015). Enhancing the development of Chinese fifth-graders’ problem-posing and problem-solving abilities, beliefs, and attitudes: a design experiment. In F. M. Singer, N. F. Ellerton & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp.309-329). New York, NY: Springer.
  • Chen, T., & Cai, J. (2020). An elementary mathematics teacher learning to teach using problem posing: A case of the distributive property of multiplication over addition. International Journal of Educational Research, 102, 101420
  • Chmiliar, l. (2010). Multiple-case designs. In A. J. Mills, G. Eurepas & E. Wiebe (Eds.), Encyclopedia of case study research (pp 582-583). USA: SAGE Publications.
  • Divrik, R. (2023). Effect of teaching mathematics supported by problem-posing strategies on problem-posing skills. International Journal of Modern Education Studies, 7(2), 371-408.
  • Einstein, A., & Infeld, L. (1938). The evolution of physics. Cambridge University Press.
  • Ellerton, N. F. (2013). Engaging pre-service middle-school teacher-education students in mathematical problemposing: development of an active learning framework. Educational Studies in Mathematics, 83(1), 87–101.
  • English, L. D. (1997). The development of fifth grade children’s problem-posing abilities. Educational Studies in Mathematics, 34 (3), 183–217.
  • English, L. D. (1998). Children’s problem posing within formal and informal contexts. Journal for Research in Mathematics Education, 29(1), 83–106.
  • Ergin, A. S., & Türnüklü, E. (2019). 7. sınıf öğrencilerinin kurdukları geometri problemlerinde yaratıcılıklarının incelenmesi. Eğitim ve Öğretim Araştırmaları Dergisi, 8(1), 27-38.
  • Ev Çimen, E. & Yıldız, Ş. (2017). Ortaokul Matematik Ders Kitaplarında Yer Verilen Problem Kurma Etkinliklerinin İncelenmesi. Turkish Journal of Computer and Mathematics Education, 8(3), 378-407.
  • Gündoğdu Alaylı, F. (2023). Investigation of Problem Posing Situations of Sixth Grade Students, International Journal of Education Technology and Scientific Researches, 8(23), 1683-1720.

ÖĞRETMEN ADAYLARININ KURULAN MATEMATİK PROBLEMLERİNİ DEĞERLENDİRME KRİTERLERİNİN İNCELENMESİ

Yıl 2024, Cilt: 14 Sayı: 1, 427 - 441, 31.01.2024
https://doi.org/10.24315/tred.1390162

Öz

Öğretmen adaylarının kurulan problemleri nasıl değerlendirdiği; öğretmenlik mesleğini anlamalarına ve içselleştirmelerine katkı sağlayacaktır. Bu bağlamda yapılan bu çalışmada matematik öğretmen adaylarının matematik problemlerini değerlendirme yaklaşımlarının incelenmesi amaçlanmıştır. Araştırmada nitel araştırma yöntemlerinden biri olan durum çalışması kullanılmıştır. Araştırma Türkiye’nin bir ilindeki bir devlet üniversitesinde ilköğretim matematik öğretmenliği dördüncü sınıfta öğrenim gören 20 öğrenci ile gerçekleştirilmiştir. Yapılan bu çalışmanın veri toplama sürecinde öğrenci yanıtlarını içeren form öğretmen adaylarına dağıtılmış ve öğretmen adaylarının öğrencilerinin problem kurma etkinliklerine verdikleri yanıtları değerlendirmeleri istenmiştir. Katılımcılara alanyazındaki değerlendirme kriterleri konusunda herhangi bir bilgi verilmeyip öğrenci yanıtlarını değerlendirmede serbest bırakılmıştır. Araştırmada elde edilen verilerin analizinde içerik analizden yararlanılmıştır. Katılımcılardan elde edilen bulgular öğrencilerin problem kurma etkinliklerine verdikleri yanıtları değerlendirirken 6 ana kriterden yararlandıkları görülmüştür. Bu ana kriterler; problem mi?, problem kurma durumuna uygunluk, çözülebilirlik, bağlamsallık, dil kullanımı ve karmaşıklıktır. Problem kurma durumuna uygunluk ve çözülebilirlik kriterleri tüm öğretmen adayları tarafından kullanılan kriterler iken diğer kriterlerin öğretmen adayları tarafından kullanılma sıklıkları farklılık göstermektedir. Bu sonuçlar doğrultusunda öğretmen adaylarının zihinlerinde bir değerlendirme şeması olmadığı düşünülmüştür. Bu nedenle de öğretmen adaylarına kurulan matematik problemlerini değerlendirmeye yönelik eğitimler verilmesi önerilmiştir.

Kaynakça

  • Aydoğdu, A. S., & Türnüklü, E. (2023). Geometride problem kurmaya dayalı çalışmaların yaratıcılıkla olan ilişkisinin incelenmesi. Trakya Eğitim Dergisi, 13(2), 1434-1450.
  • Bonotto, C., & Santo, L. D. (2015). On the relationship between problem posing, problem solving, and creativity in the primary school. F. M. Singer, N. F. Ellerton & J. Cai (Eds.), Mathematical problem posing. From research to effective practice (p. 103-123).
  • Brown, S. I., & Walter, M. I. (1983). The art of problem posing. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Cai, J., & Hwang, S. (2002). Generalised and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421.
  • Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research, 102, 101420.
  • Cai, J., & Hwang, S. (2023). Making mathematics challenging through problem posing in the classroom. In Mathematical Challenges For All (pp. 115-145). Cham: Springer International Publishing.
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics, 105, 287-301.
  • Cankoy, O., & Özder, H. (2017). Generalizability theory research on developing a scoring rubric to assess primary school students' problem posing skills. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2423-2439.
  • Chen, L., Van Dooren, W., Chen, Q., & Verschaffel, L. (2011). An investigation on chinese teachers’realistic problem posing and problem solving ability and beliefs. International Journal of Science and Mathematics Education, 9, 919-948.
  • Chen, L., Van Dooren, W., & Verschaffel, L. (2015). Enhancing the development of Chinese fifth-graders’ problem-posing and problem-solving abilities, beliefs, and attitudes: a design experiment. In F. M. Singer, N. F. Ellerton & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp.309-329). New York, NY: Springer.
  • Chen, T., & Cai, J. (2020). An elementary mathematics teacher learning to teach using problem posing: A case of the distributive property of multiplication over addition. International Journal of Educational Research, 102, 101420
  • Chmiliar, l. (2010). Multiple-case designs. In A. J. Mills, G. Eurepas & E. Wiebe (Eds.), Encyclopedia of case study research (pp 582-583). USA: SAGE Publications.
  • Divrik, R. (2023). Effect of teaching mathematics supported by problem-posing strategies on problem-posing skills. International Journal of Modern Education Studies, 7(2), 371-408.
  • Einstein, A., & Infeld, L. (1938). The evolution of physics. Cambridge University Press.
  • Ellerton, N. F. (2013). Engaging pre-service middle-school teacher-education students in mathematical problemposing: development of an active learning framework. Educational Studies in Mathematics, 83(1), 87–101.
  • English, L. D. (1997). The development of fifth grade children’s problem-posing abilities. Educational Studies in Mathematics, 34 (3), 183–217.
  • English, L. D. (1998). Children’s problem posing within formal and informal contexts. Journal for Research in Mathematics Education, 29(1), 83–106.
  • Ergin, A. S., & Türnüklü, E. (2019). 7. sınıf öğrencilerinin kurdukları geometri problemlerinde yaratıcılıklarının incelenmesi. Eğitim ve Öğretim Araştırmaları Dergisi, 8(1), 27-38.
  • Ev Çimen, E. & Yıldız, Ş. (2017). Ortaokul Matematik Ders Kitaplarında Yer Verilen Problem Kurma Etkinliklerinin İncelenmesi. Turkish Journal of Computer and Mathematics Education, 8(3), 378-407.
  • Gündoğdu Alaylı, F. (2023). Investigation of Problem Posing Situations of Sixth Grade Students, International Journal of Education Technology and Scientific Researches, 8(23), 1683-1720.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Makaleler
Yazarlar

Mustafa Zeki Aydoğdu 0000-0003-1163-2890

Erken Görünüm Tarihi 26 Ocak 2024
Yayımlanma Tarihi 31 Ocak 2024
Gönderilme Tarihi 13 Kasım 2023
Kabul Tarihi 13 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Aydoğdu, M. Z. (2024). ÖĞRETMEN ADAYLARININ KURULAN MATEMATİK PROBLEMLERİNİ DEĞERLENDİRME KRİTERLERİNİN İNCELENMESİ. Trakya Eğitim Dergisi, 14(1), 427-441. https://doi.org/10.24315/tred.1390162