Research Article
BibTex RIS Cite

A Mesh Convergence Study on 2-D Air Bubble Barrier Simulation with Mean of Inlet Static Pressure and Horizontal Surface Velocity

Year 2023, , 43 - 53, 01.06.2023
https://doi.org/10.52998/trjmms.1268375

Abstract

Timing is vital for oil spill response operations. However, deployment of the traditional response equipment, unfortunately, takes much more time. Therefore, innovative solutions are needed to minimize time losses. One of these innovative solutions is the air bubble barrier. Air bubble barrier creates a barrier to anything floating in the water, especially keeping the floating oil and petroleum in the area where it is spilled. Computational Fluid Dynamics simulation has grown in importance as a resource for air bubble barrier studies in recent years. Despite the extraordinary success of Reynolds Averaged Navier-Stoke applications on air bubble barriers, just a few studies concentrate on mesh sensitivity, one of the most fundamental issues with CFD methods. The main purpose of this study is to perform a mesh convergence study by simulating an air bubble barrier in the Simcenter STAR CCM+ software. In this context, in this simulation, a 2D numerical model is considered. The mesh convergence study has been performed by calculating the aperture inlet mean static pressure and the mean horizontal surface velocity. As a result, it is evident that the mesh base size and number of elements in mesh in case 10 can be employed to maintain the solution time-optimal state in the upcoming numerical simulations on the 2D and 3D air bubble barrier. Case 10 represents the mesh base size of 0.015 and the number of elements in mesh of 99042. Findings from this parametric study will be incorporated as mesh control rules into the subsequent 2D and 3D simulations of the air bubble barrier.

Supporting Institution

Dokuz Eylul University, Department of Scientific Research Projects

Project Number

FDK-2021-2594

References

  • Bishop, J.E., Strack, O.E., (2011). A statistical method for verifying mesh convergence in Monte Carlo simulations with application to fragmentation. International Journal for Numerical Methods in Engineering 88(3): 279-306. doi:10.1002/nme.3176.
  • Bjorkman, G.S., Molitoris, D.P., 2012. Mesh convergence studies for thin shell elements developed by the ASME Task group on computational modeling. ASME 2011 Pressure Vessels and Piping Conference 57705, pp. 119-123. doi: 10.1115/PVP2011-57705.
  • Bulson, P.S., (1961). Current produced by an air curtain in deep water. The Dock and Harbour Authority 42: 15-22.
  • Devals, C., Vu, T.V., Zhang, Y., Dompierre, J., Guibault, F., 2016. Mesh convergence study for hydraulic turbine draft-tube. 28th IAHR symposium on Hydraulic Machinery and Systems, 49: 082021. doi: 10.1088/1755-1315/49/8/082021.
  • Eidnes, G., Leirvik, F., McClimans, T.A., Gjosund, S. H., Grimaldo, E., 2013. Containing oil spills by use of air bubbles. Proceedings of the 2013 International offshore and polar engineering anchorage, Alaska, USA.
  • Fujita, I., 2016. Bubble curtain for blocking spilled oil on water surface, 2016 Techno-Ocean, pp. 354-359. doi: 10.1109/TechnoOcean.2016.7890678.
  • Gardiner, J., Finite Element Analysis Convergence and Mesh Independence, (2022). Accessed Date: 10.03.2022, https://www.xceed-eng.com/finite-element-analysis-convergence-and-mesh-independence/ is retrieved.
  • Gargallo-Peiro, A., Avila, M., Owen, H., Prieto-Godino, L., Folch, A., (2018). Mesh generation, sizing and convergence for onshore and offshore wind farm Atmospheric Boundary Layer flow simulation with actuator discs. Journal of Computational Physics 375: 209-227. doi: 10.1016/j.jcp.2018.08.031.
  • Gargallo-Peiro, A., Revilla, G., Avila, M., Houzeaux, G., (2022). A level set-based actuator disc model for turbine realignment in wind farm simulation: Meshing, convergence and applications. Energies 15(23): 1-24. doi: 10.3390/en15238877.
  • Ghavidel, A., Rashki, M., Ghohani Arab, H., Azhdary Moghaddam, M., (2020). Reliability mesh convergence analysis by introducing expanded control variates. Frontiers of Structural and Civil Engineering 14(4): 1012-1023. doi: 10.1007/s11709-020-0631-6.
  • Grace, J., Sowyrda, A., (1970). The development and evaluation of a pneumatic barrier for restraining surface oils in a river. Journal of the Water Pollution Control Federation 42: 2074-2093.
  • Gündüz, M., Sözer, A., (2022). Modelling the impact of the oil spill pollution in Ildır Bay, Turkey. Turkish Journal of Maritime and Marine Sciences 8(1): 60-68. doi: 10.52998/trjmms.1070706.
  • Hazar, C., Toz, A.C., 2022. Use of air bubble barrier for oil containment: A literature review. Global Conference on Engineering Research (GLOBCER’22) Proceedings Book, pp. 126-133, Turkey.
  • Jiang, Y., Murray, A., Di Mare, L., Ireland, P., (2022). Mesh sensitivity of RANS simulations on film cooling flow. International Journal of Heat and Mass Transfer 182(121825). doi: 10.1016/j.ijheatmasstransfer.2021.121825.
  • Lo, J.M., (1997). The effect of air bubble barriers in containing oil-slick movement. Ocean Engineering 24(7): 645-663.
  • Loseille, A., Dervieux, A., Frey, P., Alauzet, F., 2007. Achievement of global second order mesh convergence for discontinuous flows with adapted unstructured meshes. 18th AIAA Computational Fluid Dynamics Conference, 4186. doi: 10.2514/6.2007-4186.
  • Lozano, C., (2019). Watch your adjoints! Lack of mesh convergence in inviscid adjoint solutions. American Institute of Aeronautics and Astronautics Journal 57(9): 3991-4006. doi: 10.2514/1.J057259.
  • Lu, J., Xu, Z., Xu, S., Xie, S., Wu, H., Yang, Z., Liu, X., (2015). Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water. Marine Pollution Bulletin 95(1): 200-206. doi: 10.1016/j.marpolbul.2015.04.020.
  • McClimans, T., Leifer, I., Gjosund, S.H., Grimaldo, E., Daling, P., Leirvik, F., (2013). Pneumatic oil barriers: The promise of area bubble plumes. Engineering for The Maritime Environment 227(1): 22-38. doi: 10.1177/14750902124502.
  • Menter, F.R., 1992. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA Technical Memorandum 103975.
  • Molitoris, D.P., Bjorkman, G.S., Tso, C.F., Yaksh, M., 2014. Mesh convergence studies for thick shell elements developed by the ASME special working group on computational modeling. ASME 2013 Pressure Vessels and Piping Conference, 97992. doi: 10.1115/PVP2013-97992.
  • Naik, N., Shenoy, P., Nayak, N., Awasthi, S., Samant, R., (2019). Mesh convergence test for finite element method on high pressure gas turbine disk rim using energy norm: An Alternate approach. International Journal of Mechanical Engineering and Technology 10(1): 765-775. doi: 10.34218/IJMET.10.1.2019.078.
  • Patil, H., Jeyakarthikeyan, P.V., 2018. Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of Ansys. 2nd International conference on Advances in Mechanical Engineering, 402, 012065. doi:10.1088/1757-899X/402/1/012065.
  • Puggelli, S., Leparoux, J., Brunet, C., Mercier, R., Liberatori, L., Zurbach, S., Cabot, G., Grisch, F., (2023). Application of an automatic mesh convergence procedure for the large eddy simulation of a multipoint injection system. J. Eng. Gas Turbines Power 145(6): 061019. doi: 10.1115/1.4056635.
  • Sanjaya, Y., Prabowo, A.R., Imaduddin, F., Nordin N.A.B., (2021). Design and analysis of mesh size subjected to wheel rim convergence using finite element method. Procedia Structural Integrity 33: 51-58. doi: 10.1016/j.prostr.2021.10.008.
  • Simmons, H.B., 1967. Potential benefits of pneumatic barriers in estuaries. Proceedings, American Society of Civil Engineers, 93, pp. 1-16.
  • Taraschi, G., Correa, M.R., (2022). On the convergence of the primal hybrid finite element method on quadrilateral meshes. Applied Numerical Mathematics 181: 552-560. doi: 10.1016/j.apnum.2022.07.005.
  • Taylor, G.I., 1955. The action of a surface current used as a breakwater. Proceedings, Royal Society of London, Series A 231, pp. 466-478.
  • Tso, C.F., Molitoris, D.P., Snow, S., (2012). Propped cantilever mesh convergence study using hexahedral elements. Packaging, Transport, Storage & Security of Radioactive Material 23(10-2): 30-35. doi: 10.1179/1746510912Y.0000000011.
  • Vales, J., Kala, Z., (2018). Mesh convergence study of solid FE model for buckling analysis. AIP Conference Proceedings 1978(1): 150005. doi: 10.1063/1.5043796.
  • Wang, I.T., (2014). Numerical and experimental verification of finite element mesh convergence under explosion loading. Journal of Vibroengineering 16(4): 1786-1798.
  • Wang, Y., Yin, Z., Liu, Y., Yu, N., Zou, W., (2019). Numerical investigation on combined wave damping effect of pneumatic breakwater and submerged breakwater. International Journal of Naval Architecture and Ocean Engineering 11(1): 314-328. doi: 10.1016/j.ijnaoe.2018.06.006.
  • Xu, T.J., Wang, X.R., Guo, W.J., Dong, G.H., Bi, C.W., (2019). Numerical simulation of the hydrodynamic behavior of a pneumatic breakwater. Ocean Engineering 180(9): 108-118. doi: 10.1016/j.oceaneng.2019.04.010.
  • Yin, Z., Wang, Y., Jia, Q., (2020). Hydrodynamic characteristics of a pneumatic breakwater with combined wave-current actions: A numerical investigation. Journal of Coastal Research 36(1): 196-203. doi: 10.2112/JCOASTRES-D-18-00140.1.
  • Zadeh, S.N., Komeili, M., Paraschivoiu, M., (2014). Mesh convergence study for 2-D straight-blade vertical axis wind turbine simulations and estimation for 3-D simulations. Transactions of the Canadian Society for Mechanical Engineering 38(4): 487-504. doi: 10.1139/tcsme-2014-0032.
  • Zang, C., (2013). Numerical simulation study on the submerged pipe depth of air bubbles breakwater. Applied Mechanics and Materials 353-356: 2732-2735. doi:10.4028/www.scientific.net/AMM.353-356.2732.
  • Zang, C., (2014). Numerical simulation on the wave dissipating performance of air bubbles breakwater with double air discharged pipes. Applied Mechanics and Materials 501-504: 2112-2115. doi: 10.4028/www.scientific.net/AMM.501-504.2112.
  • Zang, C., Bai, L., (2012). Numerical simulation study on the air amount scale of air bubbles breakwater. Applied Mechanics and Materials 170-173: 2298-2302. doi:10.4028/www.scientific.net/AMM.170-173.2298.
  • Zhang, C., Wang, Y., Wang, G., Yu, L., (2010). Wave dissipating performance of air bubble breakwaters with different layouts. Journal of Hydrodynamics 22(5): 671-680. doi: 10.1016/S1001-6058(09)60102-5.

Ortalama Giriş Statik Basıncı ve Yatay Yüzey Hızı ile 2-Boyutlu Hava Kabarcığı Bariyeri Simülasyonu Üzerinde Bir Ağ Yakınsama Çalışması

Year 2023, , 43 - 53, 01.06.2023
https://doi.org/10.52998/trjmms.1268375

Abstract

Petrol sızıntısı müdahale operasyonları için zamanlama çok önemlidir. Ancak, geleneksel müdahale ekipmanının konuşlandırılması maalesef çok daha fazla zaman almaktadır. Bu nedenle, zaman kayıplarını en aza indirgemek için yenilikçi çözümlere ihtiyaç vardır. Bu yenilikçi çözümlerden biri de hava kabarcığı bariyeridir. Hava kabarcığı bariyeri, suda yüzen her şeye karşı bir bariyer oluşturur, özellikle yüzen petrolü ve petrolü döküldüğü alanda tutar. Hesaplamalı Akışkanlar Dinamiği simülasyonu, son yıllarda hava kabarcığı bariyeri çalışmaları için bir kaynak olarak önem kazanmıştır. Hava kabarcığı bariyerlerinde Reynolds Ortalamalı Navier-Stokes uygulamalarının olağanüstü başarısına rağmen, HAD yöntemlerinin en temel sorunlarından biri olan ağ hassasiyetine odaklanan çok az çalışma vardır. Bu çalışmanın temel amacı, Simcenter STAR CCM+ yazılımında bir hava kabarcığı bariyerini simüle ederek bir ağ yakınsama çalışması yapmaktır. Bu kapsamda bu simülasyonda 2D sayısal model ele alınmıştır. Ağ yakınsama çalışması, nozul girişi ortalama statik basıncı ve ortalama yatay yüzey hızı hesaplanarak gerçekleştirilmiştir. Sonuç olarak, 2D ve 3D hava kabarcığı bariyeri üzerinde gelecek sayısal simülasyonlarda çözüm süresi-en uygun durumunu korumak için durum 10'daki ağ taban boyutunun ve ağ elemanı sayısının kullanılabileceği açıktır. Durum 10, 0.015'lik ağ taban boyutunu ve 99042'lik ağdaki eleman sayısını temsil eder. Bu parametrik çalışmadan elde edilen bulgular, ağ kontrol kuralları olarak hava kabarcığı bariyerinin sonraki 2B ve 3B simülasyonlarına dahil edilecektir.

Project Number

FDK-2021-2594

References

  • Bishop, J.E., Strack, O.E., (2011). A statistical method for verifying mesh convergence in Monte Carlo simulations with application to fragmentation. International Journal for Numerical Methods in Engineering 88(3): 279-306. doi:10.1002/nme.3176.
  • Bjorkman, G.S., Molitoris, D.P., 2012. Mesh convergence studies for thin shell elements developed by the ASME Task group on computational modeling. ASME 2011 Pressure Vessels and Piping Conference 57705, pp. 119-123. doi: 10.1115/PVP2011-57705.
  • Bulson, P.S., (1961). Current produced by an air curtain in deep water. The Dock and Harbour Authority 42: 15-22.
  • Devals, C., Vu, T.V., Zhang, Y., Dompierre, J., Guibault, F., 2016. Mesh convergence study for hydraulic turbine draft-tube. 28th IAHR symposium on Hydraulic Machinery and Systems, 49: 082021. doi: 10.1088/1755-1315/49/8/082021.
  • Eidnes, G., Leirvik, F., McClimans, T.A., Gjosund, S. H., Grimaldo, E., 2013. Containing oil spills by use of air bubbles. Proceedings of the 2013 International offshore and polar engineering anchorage, Alaska, USA.
  • Fujita, I., 2016. Bubble curtain for blocking spilled oil on water surface, 2016 Techno-Ocean, pp. 354-359. doi: 10.1109/TechnoOcean.2016.7890678.
  • Gardiner, J., Finite Element Analysis Convergence and Mesh Independence, (2022). Accessed Date: 10.03.2022, https://www.xceed-eng.com/finite-element-analysis-convergence-and-mesh-independence/ is retrieved.
  • Gargallo-Peiro, A., Avila, M., Owen, H., Prieto-Godino, L., Folch, A., (2018). Mesh generation, sizing and convergence for onshore and offshore wind farm Atmospheric Boundary Layer flow simulation with actuator discs. Journal of Computational Physics 375: 209-227. doi: 10.1016/j.jcp.2018.08.031.
  • Gargallo-Peiro, A., Revilla, G., Avila, M., Houzeaux, G., (2022). A level set-based actuator disc model for turbine realignment in wind farm simulation: Meshing, convergence and applications. Energies 15(23): 1-24. doi: 10.3390/en15238877.
  • Ghavidel, A., Rashki, M., Ghohani Arab, H., Azhdary Moghaddam, M., (2020). Reliability mesh convergence analysis by introducing expanded control variates. Frontiers of Structural and Civil Engineering 14(4): 1012-1023. doi: 10.1007/s11709-020-0631-6.
  • Grace, J., Sowyrda, A., (1970). The development and evaluation of a pneumatic barrier for restraining surface oils in a river. Journal of the Water Pollution Control Federation 42: 2074-2093.
  • Gündüz, M., Sözer, A., (2022). Modelling the impact of the oil spill pollution in Ildır Bay, Turkey. Turkish Journal of Maritime and Marine Sciences 8(1): 60-68. doi: 10.52998/trjmms.1070706.
  • Hazar, C., Toz, A.C., 2022. Use of air bubble barrier for oil containment: A literature review. Global Conference on Engineering Research (GLOBCER’22) Proceedings Book, pp. 126-133, Turkey.
  • Jiang, Y., Murray, A., Di Mare, L., Ireland, P., (2022). Mesh sensitivity of RANS simulations on film cooling flow. International Journal of Heat and Mass Transfer 182(121825). doi: 10.1016/j.ijheatmasstransfer.2021.121825.
  • Lo, J.M., (1997). The effect of air bubble barriers in containing oil-slick movement. Ocean Engineering 24(7): 645-663.
  • Loseille, A., Dervieux, A., Frey, P., Alauzet, F., 2007. Achievement of global second order mesh convergence for discontinuous flows with adapted unstructured meshes. 18th AIAA Computational Fluid Dynamics Conference, 4186. doi: 10.2514/6.2007-4186.
  • Lozano, C., (2019). Watch your adjoints! Lack of mesh convergence in inviscid adjoint solutions. American Institute of Aeronautics and Astronautics Journal 57(9): 3991-4006. doi: 10.2514/1.J057259.
  • Lu, J., Xu, Z., Xu, S., Xie, S., Wu, H., Yang, Z., Liu, X., (2015). Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water. Marine Pollution Bulletin 95(1): 200-206. doi: 10.1016/j.marpolbul.2015.04.020.
  • McClimans, T., Leifer, I., Gjosund, S.H., Grimaldo, E., Daling, P., Leirvik, F., (2013). Pneumatic oil barriers: The promise of area bubble plumes. Engineering for The Maritime Environment 227(1): 22-38. doi: 10.1177/14750902124502.
  • Menter, F.R., 1992. Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows. NASA Technical Memorandum 103975.
  • Molitoris, D.P., Bjorkman, G.S., Tso, C.F., Yaksh, M., 2014. Mesh convergence studies for thick shell elements developed by the ASME special working group on computational modeling. ASME 2013 Pressure Vessels and Piping Conference, 97992. doi: 10.1115/PVP2013-97992.
  • Naik, N., Shenoy, P., Nayak, N., Awasthi, S., Samant, R., (2019). Mesh convergence test for finite element method on high pressure gas turbine disk rim using energy norm: An Alternate approach. International Journal of Mechanical Engineering and Technology 10(1): 765-775. doi: 10.34218/IJMET.10.1.2019.078.
  • Patil, H., Jeyakarthikeyan, P.V., 2018. Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of Ansys. 2nd International conference on Advances in Mechanical Engineering, 402, 012065. doi:10.1088/1757-899X/402/1/012065.
  • Puggelli, S., Leparoux, J., Brunet, C., Mercier, R., Liberatori, L., Zurbach, S., Cabot, G., Grisch, F., (2023). Application of an automatic mesh convergence procedure for the large eddy simulation of a multipoint injection system. J. Eng. Gas Turbines Power 145(6): 061019. doi: 10.1115/1.4056635.
  • Sanjaya, Y., Prabowo, A.R., Imaduddin, F., Nordin N.A.B., (2021). Design and analysis of mesh size subjected to wheel rim convergence using finite element method. Procedia Structural Integrity 33: 51-58. doi: 10.1016/j.prostr.2021.10.008.
  • Simmons, H.B., 1967. Potential benefits of pneumatic barriers in estuaries. Proceedings, American Society of Civil Engineers, 93, pp. 1-16.
  • Taraschi, G., Correa, M.R., (2022). On the convergence of the primal hybrid finite element method on quadrilateral meshes. Applied Numerical Mathematics 181: 552-560. doi: 10.1016/j.apnum.2022.07.005.
  • Taylor, G.I., 1955. The action of a surface current used as a breakwater. Proceedings, Royal Society of London, Series A 231, pp. 466-478.
  • Tso, C.F., Molitoris, D.P., Snow, S., (2012). Propped cantilever mesh convergence study using hexahedral elements. Packaging, Transport, Storage & Security of Radioactive Material 23(10-2): 30-35. doi: 10.1179/1746510912Y.0000000011.
  • Vales, J., Kala, Z., (2018). Mesh convergence study of solid FE model for buckling analysis. AIP Conference Proceedings 1978(1): 150005. doi: 10.1063/1.5043796.
  • Wang, I.T., (2014). Numerical and experimental verification of finite element mesh convergence under explosion loading. Journal of Vibroengineering 16(4): 1786-1798.
  • Wang, Y., Yin, Z., Liu, Y., Yu, N., Zou, W., (2019). Numerical investigation on combined wave damping effect of pneumatic breakwater and submerged breakwater. International Journal of Naval Architecture and Ocean Engineering 11(1): 314-328. doi: 10.1016/j.ijnaoe.2018.06.006.
  • Xu, T.J., Wang, X.R., Guo, W.J., Dong, G.H., Bi, C.W., (2019). Numerical simulation of the hydrodynamic behavior of a pneumatic breakwater. Ocean Engineering 180(9): 108-118. doi: 10.1016/j.oceaneng.2019.04.010.
  • Yin, Z., Wang, Y., Jia, Q., (2020). Hydrodynamic characteristics of a pneumatic breakwater with combined wave-current actions: A numerical investigation. Journal of Coastal Research 36(1): 196-203. doi: 10.2112/JCOASTRES-D-18-00140.1.
  • Zadeh, S.N., Komeili, M., Paraschivoiu, M., (2014). Mesh convergence study for 2-D straight-blade vertical axis wind turbine simulations and estimation for 3-D simulations. Transactions of the Canadian Society for Mechanical Engineering 38(4): 487-504. doi: 10.1139/tcsme-2014-0032.
  • Zang, C., (2013). Numerical simulation study on the submerged pipe depth of air bubbles breakwater. Applied Mechanics and Materials 353-356: 2732-2735. doi:10.4028/www.scientific.net/AMM.353-356.2732.
  • Zang, C., (2014). Numerical simulation on the wave dissipating performance of air bubbles breakwater with double air discharged pipes. Applied Mechanics and Materials 501-504: 2112-2115. doi: 10.4028/www.scientific.net/AMM.501-504.2112.
  • Zang, C., Bai, L., (2012). Numerical simulation study on the air amount scale of air bubbles breakwater. Applied Mechanics and Materials 170-173: 2298-2302. doi:10.4028/www.scientific.net/AMM.170-173.2298.
  • Zhang, C., Wang, Y., Wang, G., Yu, L., (2010). Wave dissipating performance of air bubble breakwaters with different layouts. Journal of Hydrodynamics 22(5): 671-680. doi: 10.1016/S1001-6058(09)60102-5.
There are 39 citations in total.

Details

Primary Language English
Subjects Marine Technology, Ship and Platform Structures (Incl. Maritime Hydrodynamics), Maritime Engineering (Other)
Journal Section Research Article
Authors

Canberk Hazar 0000-0001-6138-4181

Ali Töz 0000-0001-5348-078X

Project Number FDK-2021-2594
Early Pub Date May 13, 2023
Publication Date June 1, 2023
Submission Date March 20, 2023
Acceptance Date May 3, 2023
Published in Issue Year 2023

Cite

APA Hazar, C., & Töz, A. (2023). A Mesh Convergence Study on 2-D Air Bubble Barrier Simulation with Mean of Inlet Static Pressure and Horizontal Surface Velocity. Turkish Journal of Maritime and Marine Sciences, 9(1), 43-53. https://doi.org/10.52998/trjmms.1268375

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).