Research Article
BibTex RIS Cite

Optimization of Main Engine Fuel Consumption and Reduction of CO2 Emission in Trawl Fisheries

Year 2018, Volume: 4 Issue: 2, 116 - 127, 03.12.2018

Abstract

In this study on the
determination and optimization of fuel consumption in trawlers, a system has been
established which could display and record of instant and total fuel
consumption, speed, position and engine rpm in Lamas-1 research vessel. The
ideal rpm values for cruising and trawling operation have been determined as
1000 rpm and 1400 rpm through the system respectively. The values obtained from
cruise trials have been proved that speed increase of approximately 1 knot have
been a hundred percent (100%) increase in the fuel consumption. Furthermore,
obtained ideal rpm value for trawl operation has been achieved up to 28% fuel
savings. CO
2 emissions have been calculated from obtained cruising
and trawling fuel consumptions. CO2
emissions of optimized rpm
values have been compared for both cruising and trawling operation values, and
the reduction of 88% and 43% attained respectively.

References

  • Tyedmers P.H. 2001. Energy consumed by North Atlantic Fisheries. Zeller D, Watson R, Pauly D, editors. Fisheries impacts on North Atlantic Ecosystems: catch, effort and national/regional datasets. Fisheries Centre Research Reports, 9(3): 12–34.
  • Lam, V.W.Y., Sumaila, U.R., Dyck, A., Pauly, D., Watson, R., (2011) Construction and first applications of a global cost of fishing database. Ices Journal of Marine Science, 68. doi:10.1093/icesjms/fsr121
  • Gaston, T., Thomas, G., Maynard, D., Frost, R., 2012. Energy efficiency through bycatch reduction –a radical approach. Proceedings of the Second International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
  • Cheilari, A., Guillen, J., Damalas, D., Barbas, T., (2013). Effects of the fuel price crisis on the energy efficiency and the economic performance of the European Union fishing fleets. Marine Policy 40: 18–24. doi: 10.1016/j.marpol.2012.12.006.
  • FAO, 2014. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome.
  • Sala, A., De Carlo, F., Buglioni, G., Luchetti, A. 2010. Coriolis fuel mass flow metering for fishing vessels. First International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
  • Sala, A., De Carlo, F., Buglioni, G., Luchetti, A., (2011). Energy performance evaluation of fishing vessels by fuel mass flow measuring system. Ocean Engineering 38: 804-809.
  • doi:10.1016/j.oceaneng.2011.02.004
  • Poos, J.J., Turenhout, M.N.J., van Oostenbrugge, H.A.E., Rijnsdorp, A.D., (2013). Adaptive response of beam trawl fishers to rising fuel cost. ICES Journal of Marine Science 70(3): 675–684. doi:10.1093/icesjms/fss196
  • Laurens J.M., Dasira, A., 2014. Improving the propulsive efficiency of an Indonesian trawler. Third International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
  • Driscoll, J., Tyedmers, P., (2010). Fuel use and greenhouse gas emission implications of fisheries management: the case of the New England atlantic herring fishery. Marine Policy 34: 353–359.
  • doi:10.1016/j.marpol.2009.08.005
  • Suuronen, P., Chopina, F., Glassb, C., Løkkeborgc, S., Matsushitad, Y., Queiroloe, D., Rihanf, D., (2012). Low impact and fuel-efficient fishing-Looking beyond the horizon. Fisheries Research 119–120: 135–146. doi: 10.1016/j.fishres.2011.12.009
  • Özbilgin, H., Gökçe, G., Özbilgin, Y., Eryaşar, A.R., Kalecik, E., Bozaoğlu, A.S. 2013. Mersin Körfezi Trol Balıkçılığında Tür ve Boy Seçiciliğini Arttırmaya Yönelik Araştırmalar. TÜBİTAK 109O684 Proje Final Raporu.
  • Pekin, M.A. (2006). Ulaştırma Sektöründen Kaynaklanan Sera Gazı Emisyonları, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 99 s.
  • Parente, J., Fonseca, P., Henriques, V., Campos A., (2008). Strategies for improving fuel efficiency in the Portuguese trawl fishery. Fisheries Research 93: 117–124. doi:10.1016/j.fishres.2008.03.001
  • Thomas, G., O’Doherty, D., Sterling, D., Chin, C., (2010). Energy audit of fishing vessels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 224: 87-101. doi: 10.1243/14750902JEME186
  • Hansen, U.J., Tørring, P., Nielsen, J.W., Rønfeldt, J.L., 2013. Using Best Available Technology drastically improve Fuel Efficiency in Trawl Fisheries. Annual Meeting of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour LIFE mini symposium, Bangkok.
  • Marlen, B.V., 2012. Innovative energy saving fishing gears in the Dutch fleet. Second International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.

Trol Gemilerinde Ana Makine Yakıt Tüketiminin Optimizasyonu ve CO2 Emisyonlarının Azaltılması

Year 2018, Volume: 4 Issue: 2, 116 - 127, 03.12.2018

Abstract

Trol gemilerinde yakıt tüketiminin tespiti ve
optimizasyonu üzerine yapılan bu çalışmada Lamas-1 araştırma gemisine anlık ve
toplam yakıt tüketimi, hız, konum ve makine devrini gösteren ve kaydedebilen
bir sistem kurulmuştur. Sistem aracılığıyla seyir ve trol operasyonu için ideal
devir değerleri sırasıyla 1000 rpm ve 1400 rpm olarak belirlenmiştir. Seyir
denemeleri sonucunda elde edilen değerler, yaklaşık 1 knot hız artışı için
yakıt tüketiminin %100 arttığını göstermiştir. Trol operasyonunda ise elde
edilen ideal devirin %28’e varan yakıt tasarrufu sağladığı bulunmuştur. Trol operasyonu
ve seyir için elde edilen yakıt tüketimleri üzerinden CO2
emisyonları hesaplanmıştır. Optimize olarak tespit edilen devir değerlerinin CO2
emisyonları hem seyir hem trol operasyonu için diğer verilerle karşılaştırılmış
ve sırasıyla %88 ve %43 emisyon azalması elde edilmiştir.

References

  • Tyedmers P.H. 2001. Energy consumed by North Atlantic Fisheries. Zeller D, Watson R, Pauly D, editors. Fisheries impacts on North Atlantic Ecosystems: catch, effort and national/regional datasets. Fisheries Centre Research Reports, 9(3): 12–34.
  • Lam, V.W.Y., Sumaila, U.R., Dyck, A., Pauly, D., Watson, R., (2011) Construction and first applications of a global cost of fishing database. Ices Journal of Marine Science, 68. doi:10.1093/icesjms/fsr121
  • Gaston, T., Thomas, G., Maynard, D., Frost, R., 2012. Energy efficiency through bycatch reduction –a radical approach. Proceedings of the Second International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
  • Cheilari, A., Guillen, J., Damalas, D., Barbas, T., (2013). Effects of the fuel price crisis on the energy efficiency and the economic performance of the European Union fishing fleets. Marine Policy 40: 18–24. doi: 10.1016/j.marpol.2012.12.006.
  • FAO, 2014. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome.
  • Sala, A., De Carlo, F., Buglioni, G., Luchetti, A. 2010. Coriolis fuel mass flow metering for fishing vessels. First International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
  • Sala, A., De Carlo, F., Buglioni, G., Luchetti, A., (2011). Energy performance evaluation of fishing vessels by fuel mass flow measuring system. Ocean Engineering 38: 804-809.
  • doi:10.1016/j.oceaneng.2011.02.004
  • Poos, J.J., Turenhout, M.N.J., van Oostenbrugge, H.A.E., Rijnsdorp, A.D., (2013). Adaptive response of beam trawl fishers to rising fuel cost. ICES Journal of Marine Science 70(3): 675–684. doi:10.1093/icesjms/fss196
  • Laurens J.M., Dasira, A., 2014. Improving the propulsive efficiency of an Indonesian trawler. Third International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
  • Driscoll, J., Tyedmers, P., (2010). Fuel use and greenhouse gas emission implications of fisheries management: the case of the New England atlantic herring fishery. Marine Policy 34: 353–359.
  • doi:10.1016/j.marpol.2009.08.005
  • Suuronen, P., Chopina, F., Glassb, C., Løkkeborgc, S., Matsushitad, Y., Queiroloe, D., Rihanf, D., (2012). Low impact and fuel-efficient fishing-Looking beyond the horizon. Fisheries Research 119–120: 135–146. doi: 10.1016/j.fishres.2011.12.009
  • Özbilgin, H., Gökçe, G., Özbilgin, Y., Eryaşar, A.R., Kalecik, E., Bozaoğlu, A.S. 2013. Mersin Körfezi Trol Balıkçılığında Tür ve Boy Seçiciliğini Arttırmaya Yönelik Araştırmalar. TÜBİTAK 109O684 Proje Final Raporu.
  • Pekin, M.A. (2006). Ulaştırma Sektöründen Kaynaklanan Sera Gazı Emisyonları, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 99 s.
  • Parente, J., Fonseca, P., Henriques, V., Campos A., (2008). Strategies for improving fuel efficiency in the Portuguese trawl fishery. Fisheries Research 93: 117–124. doi:10.1016/j.fishres.2008.03.001
  • Thomas, G., O’Doherty, D., Sterling, D., Chin, C., (2010). Energy audit of fishing vessels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 224: 87-101. doi: 10.1243/14750902JEME186
  • Hansen, U.J., Tørring, P., Nielsen, J.W., Rønfeldt, J.L., 2013. Using Best Available Technology drastically improve Fuel Efficiency in Trawl Fisheries. Annual Meeting of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour LIFE mini symposium, Bangkok.
  • Marlen, B.V., 2012. Innovative energy saving fishing gears in the Dutch fleet. Second International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Aytekin Sarıca

Yunus Emre Fakıoğlu

Oğuzhan Demir This is me

Ebrucan Kalecik This is me

Gökhan Gökçe

Hüseyin Özbilgin

Publication Date December 3, 2018
Submission Date June 3, 2018
Acceptance Date August 1, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Sarıca, A., Fakıoğlu, Y. E., Demir, O., Kalecik, E., et al. (2018). Trol Gemilerinde Ana Makine Yakıt Tüketiminin Optimizasyonu ve CO2 Emisyonlarının Azaltılması. Turkish Journal of Maritime and Marine Sciences, 4(2), 116-127.

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).