Review
BibTex RIS Cite

Nutritional Composition of Protein Hydrolyzate Produced from Fish Waste

Year 2021, Volume: 7 Issue: 1, 27 - 39, 01.06.2021
https://doi.org/10.52998/trjmms.907350

Abstract

Fish by-products are valuable resources with great potential for human consumption. Fish protein hydrolysates (FPH) are used as a functional food, animal feed, organic fertilizer, and pet food as commercial products, as well as in the medicine and pharmacology sector as they show antihypertensive, antithrombotic, anticancer, immunomodulatory, and antioxidant activities with the nutraceutical properties they contain. They can be an important source for obtaining high value-added products such as protein, amino acids, collagen, gelatin, and fat. It will contribute to the sustainability of aquaculture. The quality and functional properties of the product obtained by changing the waste, enzyme and production conditions used to differ. Proteases show the ability to produce low molecular weight peptides by a high rate of hydrolysis. The amino acid composition of fish protein hydrolysates is important due to its impact on nutritional value and functional properties. The protein quality of food and its capacity to meet the needs of organisms is determined by the essential amino acids that food has. Many researchers have reported that the amino acid content of fish protein hydrolysates varies according to the species of fish and the type of enzyme. In this article, the properties of fish protein hydrolysates obtained according to different fish waste composition, enzyme concentration, temperature, time, and ph conditions were investigated.

References

  • FAO, 2020. The State of World Fisheries and Aquaculture (2020). Sustainability in action, http://www.fao.org/3/ca9229en/CA9229EN.pdf (accessed 03.07.2020),Rome.
  • Choe, U., Mustafa, A.M., Lin, H., Choe, U., Sheng, K., (2020). Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue. Bioresour. Technol. 297, 122542.
  • Kim, S.K., Mendis, E., (2006). Bioactive Compounds from Marine Processing Byproducts-A Review. Food Research International, 39, 383-393.
  • Hsu, K., (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48
  • FAO, (2017). Committee on fisheries, sub-committee on fish trade, Sixteenth Session Busan, Republic of Korea, 4-8 September, 2017, Reduction of Fish Food Loss and Waste. FAO, (2014). The state of world fisheries and aquaculture opportunities and challenges. Food and Agriculture Organization of the United Nations, Rome, 223 s.
  • Esteban, M. B., Garcia, A. J., Ramos, P., Marquez, M. C., (2007). Evaluation of fruit– vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Management, 27, 193–200.
  • Dumay, J., (2006). Extraction de lipides en voie aqueuse par bioréacteur enzymatique combiné à l'ultrafiltration : application à la valorisation de co-produits de poisson (Sardina pilchardus). Ph.D. Thesis.
  • Murray, J., Burt, J.R., (2001). The Composition of Fish. Ministry of Technology, Torry Research Station, Torry Advisory Note No. 38. Retrieved March 19, 2016, from http://www.fao.org/wairdocs/tan/x5916e/x5916e00.htm.
  • Ghaedian, R., Coupland, J.N., Decker, E.A., McClements, D.J., (1998). Ultrasonic determination of fish composition. Journal Food Engineering, 323-337.
  • Khiari, Z., Rico, D., Martin-Diana, A.B. & Barry-Ryan, C., (2015). Valorization of fish by-products: rheological, textural and microstructural properties of mackerel skin gelatins. Journal of Material Cycles and Waste Management, 19, 1, 180-191. DOI: 10.1007/s10163-015-0399-2
  • Abbey, L., Glover-Amengor, M., Atikpo, M.O., Atter, A. & Toppe, J., (2017). Nutrient content of fish powder from low value fish and fish byproducts. Food Science and Nutrition, 5, 3, 374-379. DOI:10.1002/fsn3.402
  • Suvanich, V., Ghaedian, R., Chanamai, R., Decker, E.A.E.A., McClements, DJ., (2006). Prediction of proximate fish composition from ultrasonic properties: catfish, cod, flounder, mackerel and salmon. Journal of Food Science, 63, 966-968.
  • Roslan, J., Mustapa Kamal, S. M., Yunos, K. F., Abdullah, N., (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) by-product using response surface methodology. International Food Research Journal, 22(3), 1117–1123.
  • Hou, H., Li, B., Zhao, X., Zhang, Z., & Li, P., (2011). Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT-Food Science and Technology, 44(2), 421-428.
  • Detkamhaeng, N., Warawattanamateekul, W., Hinsui, J., (2016). Production of Protein Hydrolysate from Yellowfin (Thunnus albacares) Skipjack Tuna (Katsuwonous pelamis) Viscera. Kasetsart Universty Fısheries Research Bulletin 40(2), 52.
  • Korkmaz, K., Tokur, B., (2019). Proximate Composition of Three Different Fish (Trout, Anchovy and Whiting) Waste During Catching Season. Turkish Journal of Maritime and Marine Sciences 5(2), 133-140.
  • Nguyen, H. T. M., Sylla, K. S. B., Randriamahatody, Z., Donnay-Moreno, C., Moreau, J., Tran, L. T., & Bergé, J. P., (2011). Enzymatic hydrolysis of yellowfin tuna (Thunnus albacares) by-products using Protamex protease. Food Technology and Biotechnology, 49(1), 48-55.
  • Koç, S., (2016). Hamsi (Engraulis encrasicolus) ve İşleme Atıklarından Elde Edilen Protein Hidrolizatlarının Besleyici, Fonksiyonel Ve Biyoaktif Özelliklerinin Araştırılması, Doktora Tezi, Ç.O.M.Ü Fen Bilimleri Enstitüsü, Çanakkale.
  • Benjakul, S., Morrissey, M. T., (1997). Protein hydrolysates from Pacific whiting solidwastes. Journal of Agricultural ve Food Chemistry, 45(9), 3423–3430.
  • Aspmo, S.I., Horn, S.J, Eijsink, V.G.H., (2005). Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. Journal of Applied Microbiology 99, 1082–1089.
  • Liaset, B., Lied, E., Espe, M., (2000). Enzymatic hydrolysis of by-products from thefish-filleting industry: Chemical characterisation ve nutritional evaluation. Journal of the Science of Food ve Agriculture, 80, 581–589.
  • Lalasidis, G., Bostrom, S., Sjoberg, L.B., (1978). Low molecular weight enzymatic fish protein hydrolysates: Chemical composition and nutritive value. Journal of Agricultural and Food Chemistry, 26 (3), 751-756.
  • Bhaskar, N., Benila T., Rahda, C., Lalitha R.G., (2008). Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Catla (Catla catla) For Preparing Protein Hydrolysate Using a Commercial Protease. Bioresource Technology, 99, 335-343.
  • Bakar, J., Shamloo, M., Mat Hashim, D., Khatib, A., (2012). Biochemical properties of red Tilapia (Oreochromis niloticus) protein hydrolysates. International Food Research Journal 19(1), 183-188.
  • Chalamaıah, M., Narsıng Rao, G., Rao, D.G. & Jyothırmayı, T., (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120,652-657.
  • Korkmaz, K., (2018). Ticari Enzimler Kullanılarak Farklı Balık Türü Atıklarından Hidrolizat Üretimi ve Kalitesinin Belirlenmesi. Doktora Tezi, O.D.Ü Fen Bilimleri Enstitüsü, Ordu.
  • Kristinsson, H.G., Rasco, B.A., (2000a). Biochemical ve Functional Properties of Atlantic Salmon (Salmo salar) Muscle Proteins Hydrolyzed with Various Alkalie Proteases Journal of Agricultural and Food Chemistry., 48, 657-666.
  • Sathıvel, S., Huang, S. & BechteL, P.J., (2008). Properties of pollock (Theragra chalcogramma) skin hydrolysates and effects on lipid oxidation of skinless pink salmon (Oncorhynchus gorbuscha) fillets during 4 months of frozen storage. Journal of Food Biochemistry, 32, 247-263.
  • Šližytė, R., Mozuraitytė, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T., (2009). Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44(6), 668-677.
  • Yin, H., Pu, J., Wan, Y., Xiang, B., Bechtel, P.J. & Sathivel, S., (2010). Rheological and functional properties of catfish skin protein hydrolysates. Journal of Food Science, 75, 11-17.
  • Chalamaiah, M., Dinesh K. B., Hemalatha, R., Jyothirmayi, T., (2012). Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities ve Applications: A Review. Food Chemistry, 135, 3020-3038.
  • Hoyle, N. T., & Merrltt, J. H., (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of food Science, 59(1), 76-79.
  • Liceaga-Gesualdo, A. M., Li-Chan, E.C.Y., (1999). Functional properties of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 64, 1000–1004.
  • Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C., Reppond, K. D., & Prinyawiwatkul, W., (2003). Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science, 68(7), 2196-2200.
  • Gbogouri, G. A., Linder, M., Fanni, J., Parmentier, M., (2004). Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates. Journal of Food Science, 69, 615–622.
  • Nilsang, S., Lertsiri, S., Suphantharika, M., Assavanig, A., (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70, 571–578.
  • Sathivel, S., Smiley, S., Prinyawiwatkul, W., Bechtel, P. J., (2005). Functional and nutritional properties of red salmon (oncorhynchus nerka) enzymatic hydrolysates. Journal of Food Science, 70(6), 401–406.
  • Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M., (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food technology and biotechnology, 45(2), 187-194.
  • Ovissipour, M., Safari, R., Motamedzadegan, A., Regenstein, J. M., Gildberg, A., Rasco, B., (2012). Use of hydrolysates from Yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5, 73–79.
  • dos Santos, S. D. A., Martins, V. G., Salas-Mellado, M., & Prentice, C., (2011). Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food and Bioprocess Technology, 4(8), 1399-1406.
  • Sathivel, S., Bechtel, P.J., Babbitt, J., Prinyawiwatkul, W., Negulescu, I.I. and Reppond, K.D., (2004). Properties of protein powders from Arrowtooth flounder (Athersthes stomias) and herring (Clupea harengus) by-products. Journal of Agriculture and Food Chemistry, 52, 5040-5046. DOI: 10.1021/jf0351422
  • Giménez, B., Gómez-Estaca, J., Alemán, A., Gómez-Guillén, M.C. & Montero, P., (2009). Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocolloids, 23, 585-592.
  • Ovissipour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R., Shahiri, H., (2009a). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115, 238–242.
  • Klompong, V., Benjakul, S., Yachai, M., Visessanguan, W., Shahidi, F. & Hayes, K., (2009a). Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of Food Science, 74, 126-133. DOI: 10.1111/j.1750-3841.2009.01047.x
  • Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F., (2009b). Characteristics and use of yellow stripe trevally hydrolysate as culture media. Journal of Food Science, 74, 219-S225. DOI: 10.1111/j.1750-3841.2009.01213.x
  • Lourenço da Costa, E., Antonio da Rocha Gontijo, J. & Netto, F.M., (2007). Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal, 17, 6, 632-640. DOI:10.1016/j.idairyj.2006.09.003
  • Ahn, C.B., Jeon, Y.J., Kim, Y.T. & Je, J.Y., (2012). Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochemistry, 47, 12, 2240-2245. DOI:10.1016/j.procbio.2012.08.019.
  • Contreras, M.R. Carrón, M.J. Ramos, M.M. & Recio, I., (2009). Novel caseinderived peptides with antihypertensive activity. International Dairy Journal, 19, 10, 566-573. DOI: 10.1016/j.idairyj.2009.05.004
  • Di Pierro, G., O’Keeffe, M.B. Poyarkov, A., Lomolino, G., Richard, J. & Gerald,F., (2014). Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chemistry, 156, 305-311. DOI:10.1016/j.foodchem.2014.01.080
  • Wasswa, J., Tang, J., Gub, X., Yuan, X., (2007). Influence of the Extent of Enzymatic Hydrolysis on the Functional Properties of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Skin. Food Chemistry, 104, 1698-1704.
  • Yoon, S., Watanabe, E., Ueno, H., & Kishi, M. J., (2015). Potential habitat for chum salmon (Oncorhynchus keta) in the Western Arctic based on a bioenergetics model coupled with a three-dimensional lower trophic ecosystem model. Progress in Oceanography, 131, 146-158.
  • Hoskin, D. W., & Ramamoorthy, A., (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(2), 357-375.
  • Chen, H. M., Muramoto, K., Yamauchi, F., & Nokihara, K., (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of agricultural and food chemistry, 44(9), 2619-2623.
  • Wisuthiphaet, N., Klinchan, S., & Kongruang, S., (2016). Fish protein hydrolysate production by acid and enzymatic hydrolysis. Applied Science and Engineering Progress, 9(4).
  • Sgarbieri, V. C., (1987). Alimentaçäo e nutriçäo: fator de saúde e desenvolvimento. In Alimentaçäo e nutriçäo: fator de saúde e desenvolvimento (pp. 387-387).
  • Bhaskar, N., Mahendrakar, N.S., (2008). Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technology, 99, 4105–4111.
  • Seligson, F. H., Mackey, L. N., (1984). Variable predictions of protein quality by chemical score due to amino acid analysis and reference pattern. The Journal of Food Nutrition, 114, 682–691.
  • Shahidi, F., Han, X.Q., Synowiecki, J., (1995). Production ve Characteristics of Protein Hydrolysates from Capelin (Mallotus villosus). Food Chemistry, 53, 285-293.
  • Wu, H., Chen, H., Shiau, C., (2003). Free amino acids ve peptites as related to antioxidant properties in protein hydrolysates of Mackerel (Scomber austriasicus). Food Research International, (36), 949–957.
  • Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., Kim, S. K., (2005). Purification of a radicals cavenging peptite from fermented mussels auceveits antioxidant properties. Food Research International, 38, 175–182.
  • Mendis, E., Rajapakse, N., Kim, S., (2004). Antioxidant properties of a radicals cavenging peptite purified from enzymatically prepared fish skin gelatine hydrolysate. Journal of Agricultural and Food Chemistry, 53(3), 581–587.
  • Guerard, F., Sumaya-Martinez, M. T., (2003). Antioxidant effects of protein hydrolysates inthereaction with glucose. Journal of the American Oil Chemists' Society, 80(5), 467–470.
  • Sarmadi, B. H., & Ismail, A., (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949-1956.

Balık atıklarından üretilen protein hidrolizatının besinsel kompozisyonu

Year 2021, Volume: 7 Issue: 1, 27 - 39, 01.06.2021
https://doi.org/10.52998/trjmms.907350

Abstract

Balık yan ürünleri, insan tüketimi için büyük potansiyele sahip değerli kaynaklardır. Balık protein hidrolizatları (BPH) ticari ürün olarak fonksiyonel gıda, hayvansal yem, organik gübre ve evcil hayvan gıdası olarak kullanıldığı gibi BPH’ larının içerdikleri nutrasötik özellikteki biyoaktif peptitler ile antihipertensif, antitrombotik, antikanser, immunomodulatör ve antioksidan aktivitesi gösterdikleri için tıp ve farmakolji alanında da değerlendirilmektedir. Protein, amino asit, kollajen, jelatin ve yağ gibi katma değeri yüksek ürünler elde etmek için önemli bir kaynak olabilirler. Su ürünleri yetiştiriciliğinin sürdürülebilirliğine katkı sağlayacaktır. Kullanılan atık, enzim ve üretim şartlarının değişmesiyle elde edilen ürünün kalite ve fonksiyonel özellikleri farklılık göstermektedir. Proteazlar yüksek oranda hidroliz ile düşük molekül ağırlıklı peptit üretme kabiliyeti göstermektedir. Balık protein hidrolizatlarının amino asit bileşimi, besin değeri ve fonksiyonel özelliklere olan etkisinden dolayı önemlidir. Bir gıdanın protein kalitesini ve organizmaların ihtiyaçlarını karşılama kapasitesini o gıdanın sahip olduğu esansiyel amino asitler belirler. Birçok araştırıcı balık protein hidrolizatlarının amino asit içeriklerinin, balıkların türüne ve enzim çeşidine göre değişiklik sergilediğini bildirmişlerdir. Bu makalede farklı balık atık kompozisyonları, enzim konsantrasyonu, sıcaklık, zaman ve ph şartlarına göre elde edilen balık protein hidrolizatlarının özellikleri derlenmiştir.

References

  • FAO, 2020. The State of World Fisheries and Aquaculture (2020). Sustainability in action, http://www.fao.org/3/ca9229en/CA9229EN.pdf (accessed 03.07.2020),Rome.
  • Choe, U., Mustafa, A.M., Lin, H., Choe, U., Sheng, K., (2020). Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue. Bioresour. Technol. 297, 122542.
  • Kim, S.K., Mendis, E., (2006). Bioactive Compounds from Marine Processing Byproducts-A Review. Food Research International, 39, 383-393.
  • Hsu, K., (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48
  • FAO, (2017). Committee on fisheries, sub-committee on fish trade, Sixteenth Session Busan, Republic of Korea, 4-8 September, 2017, Reduction of Fish Food Loss and Waste. FAO, (2014). The state of world fisheries and aquaculture opportunities and challenges. Food and Agriculture Organization of the United Nations, Rome, 223 s.
  • Esteban, M. B., Garcia, A. J., Ramos, P., Marquez, M. C., (2007). Evaluation of fruit– vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Management, 27, 193–200.
  • Dumay, J., (2006). Extraction de lipides en voie aqueuse par bioréacteur enzymatique combiné à l'ultrafiltration : application à la valorisation de co-produits de poisson (Sardina pilchardus). Ph.D. Thesis.
  • Murray, J., Burt, J.R., (2001). The Composition of Fish. Ministry of Technology, Torry Research Station, Torry Advisory Note No. 38. Retrieved March 19, 2016, from http://www.fao.org/wairdocs/tan/x5916e/x5916e00.htm.
  • Ghaedian, R., Coupland, J.N., Decker, E.A., McClements, D.J., (1998). Ultrasonic determination of fish composition. Journal Food Engineering, 323-337.
  • Khiari, Z., Rico, D., Martin-Diana, A.B. & Barry-Ryan, C., (2015). Valorization of fish by-products: rheological, textural and microstructural properties of mackerel skin gelatins. Journal of Material Cycles and Waste Management, 19, 1, 180-191. DOI: 10.1007/s10163-015-0399-2
  • Abbey, L., Glover-Amengor, M., Atikpo, M.O., Atter, A. & Toppe, J., (2017). Nutrient content of fish powder from low value fish and fish byproducts. Food Science and Nutrition, 5, 3, 374-379. DOI:10.1002/fsn3.402
  • Suvanich, V., Ghaedian, R., Chanamai, R., Decker, E.A.E.A., McClements, DJ., (2006). Prediction of proximate fish composition from ultrasonic properties: catfish, cod, flounder, mackerel and salmon. Journal of Food Science, 63, 966-968.
  • Roslan, J., Mustapa Kamal, S. M., Yunos, K. F., Abdullah, N., (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) by-product using response surface methodology. International Food Research Journal, 22(3), 1117–1123.
  • Hou, H., Li, B., Zhao, X., Zhang, Z., & Li, P., (2011). Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT-Food Science and Technology, 44(2), 421-428.
  • Detkamhaeng, N., Warawattanamateekul, W., Hinsui, J., (2016). Production of Protein Hydrolysate from Yellowfin (Thunnus albacares) Skipjack Tuna (Katsuwonous pelamis) Viscera. Kasetsart Universty Fısheries Research Bulletin 40(2), 52.
  • Korkmaz, K., Tokur, B., (2019). Proximate Composition of Three Different Fish (Trout, Anchovy and Whiting) Waste During Catching Season. Turkish Journal of Maritime and Marine Sciences 5(2), 133-140.
  • Nguyen, H. T. M., Sylla, K. S. B., Randriamahatody, Z., Donnay-Moreno, C., Moreau, J., Tran, L. T., & Bergé, J. P., (2011). Enzymatic hydrolysis of yellowfin tuna (Thunnus albacares) by-products using Protamex protease. Food Technology and Biotechnology, 49(1), 48-55.
  • Koç, S., (2016). Hamsi (Engraulis encrasicolus) ve İşleme Atıklarından Elde Edilen Protein Hidrolizatlarının Besleyici, Fonksiyonel Ve Biyoaktif Özelliklerinin Araştırılması, Doktora Tezi, Ç.O.M.Ü Fen Bilimleri Enstitüsü, Çanakkale.
  • Benjakul, S., Morrissey, M. T., (1997). Protein hydrolysates from Pacific whiting solidwastes. Journal of Agricultural ve Food Chemistry, 45(9), 3423–3430.
  • Aspmo, S.I., Horn, S.J, Eijsink, V.G.H., (2005). Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. Journal of Applied Microbiology 99, 1082–1089.
  • Liaset, B., Lied, E., Espe, M., (2000). Enzymatic hydrolysis of by-products from thefish-filleting industry: Chemical characterisation ve nutritional evaluation. Journal of the Science of Food ve Agriculture, 80, 581–589.
  • Lalasidis, G., Bostrom, S., Sjoberg, L.B., (1978). Low molecular weight enzymatic fish protein hydrolysates: Chemical composition and nutritive value. Journal of Agricultural and Food Chemistry, 26 (3), 751-756.
  • Bhaskar, N., Benila T., Rahda, C., Lalitha R.G., (2008). Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Catla (Catla catla) For Preparing Protein Hydrolysate Using a Commercial Protease. Bioresource Technology, 99, 335-343.
  • Bakar, J., Shamloo, M., Mat Hashim, D., Khatib, A., (2012). Biochemical properties of red Tilapia (Oreochromis niloticus) protein hydrolysates. International Food Research Journal 19(1), 183-188.
  • Chalamaıah, M., Narsıng Rao, G., Rao, D.G. & Jyothırmayı, T., (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120,652-657.
  • Korkmaz, K., (2018). Ticari Enzimler Kullanılarak Farklı Balık Türü Atıklarından Hidrolizat Üretimi ve Kalitesinin Belirlenmesi. Doktora Tezi, O.D.Ü Fen Bilimleri Enstitüsü, Ordu.
  • Kristinsson, H.G., Rasco, B.A., (2000a). Biochemical ve Functional Properties of Atlantic Salmon (Salmo salar) Muscle Proteins Hydrolyzed with Various Alkalie Proteases Journal of Agricultural and Food Chemistry., 48, 657-666.
  • Sathıvel, S., Huang, S. & BechteL, P.J., (2008). Properties of pollock (Theragra chalcogramma) skin hydrolysates and effects on lipid oxidation of skinless pink salmon (Oncorhynchus gorbuscha) fillets during 4 months of frozen storage. Journal of Food Biochemistry, 32, 247-263.
  • Šližytė, R., Mozuraitytė, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T., (2009). Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44(6), 668-677.
  • Yin, H., Pu, J., Wan, Y., Xiang, B., Bechtel, P.J. & Sathivel, S., (2010). Rheological and functional properties of catfish skin protein hydrolysates. Journal of Food Science, 75, 11-17.
  • Chalamaiah, M., Dinesh K. B., Hemalatha, R., Jyothirmayi, T., (2012). Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities ve Applications: A Review. Food Chemistry, 135, 3020-3038.
  • Hoyle, N. T., & Merrltt, J. H., (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of food Science, 59(1), 76-79.
  • Liceaga-Gesualdo, A. M., Li-Chan, E.C.Y., (1999). Functional properties of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 64, 1000–1004.
  • Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C., Reppond, K. D., & Prinyawiwatkul, W., (2003). Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science, 68(7), 2196-2200.
  • Gbogouri, G. A., Linder, M., Fanni, J., Parmentier, M., (2004). Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates. Journal of Food Science, 69, 615–622.
  • Nilsang, S., Lertsiri, S., Suphantharika, M., Assavanig, A., (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70, 571–578.
  • Sathivel, S., Smiley, S., Prinyawiwatkul, W., Bechtel, P. J., (2005). Functional and nutritional properties of red salmon (oncorhynchus nerka) enzymatic hydrolysates. Journal of Food Science, 70(6), 401–406.
  • Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M., (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food technology and biotechnology, 45(2), 187-194.
  • Ovissipour, M., Safari, R., Motamedzadegan, A., Regenstein, J. M., Gildberg, A., Rasco, B., (2012). Use of hydrolysates from Yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5, 73–79.
  • dos Santos, S. D. A., Martins, V. G., Salas-Mellado, M., & Prentice, C., (2011). Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food and Bioprocess Technology, 4(8), 1399-1406.
  • Sathivel, S., Bechtel, P.J., Babbitt, J., Prinyawiwatkul, W., Negulescu, I.I. and Reppond, K.D., (2004). Properties of protein powders from Arrowtooth flounder (Athersthes stomias) and herring (Clupea harengus) by-products. Journal of Agriculture and Food Chemistry, 52, 5040-5046. DOI: 10.1021/jf0351422
  • Giménez, B., Gómez-Estaca, J., Alemán, A., Gómez-Guillén, M.C. & Montero, P., (2009). Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocolloids, 23, 585-592.
  • Ovissipour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R., Shahiri, H., (2009a). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115, 238–242.
  • Klompong, V., Benjakul, S., Yachai, M., Visessanguan, W., Shahidi, F. & Hayes, K., (2009a). Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of Food Science, 74, 126-133. DOI: 10.1111/j.1750-3841.2009.01047.x
  • Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F., (2009b). Characteristics and use of yellow stripe trevally hydrolysate as culture media. Journal of Food Science, 74, 219-S225. DOI: 10.1111/j.1750-3841.2009.01213.x
  • Lourenço da Costa, E., Antonio da Rocha Gontijo, J. & Netto, F.M., (2007). Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal, 17, 6, 632-640. DOI:10.1016/j.idairyj.2006.09.003
  • Ahn, C.B., Jeon, Y.J., Kim, Y.T. & Je, J.Y., (2012). Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochemistry, 47, 12, 2240-2245. DOI:10.1016/j.procbio.2012.08.019.
  • Contreras, M.R. Carrón, M.J. Ramos, M.M. & Recio, I., (2009). Novel caseinderived peptides with antihypertensive activity. International Dairy Journal, 19, 10, 566-573. DOI: 10.1016/j.idairyj.2009.05.004
  • Di Pierro, G., O’Keeffe, M.B. Poyarkov, A., Lomolino, G., Richard, J. & Gerald,F., (2014). Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chemistry, 156, 305-311. DOI:10.1016/j.foodchem.2014.01.080
  • Wasswa, J., Tang, J., Gub, X., Yuan, X., (2007). Influence of the Extent of Enzymatic Hydrolysis on the Functional Properties of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Skin. Food Chemistry, 104, 1698-1704.
  • Yoon, S., Watanabe, E., Ueno, H., & Kishi, M. J., (2015). Potential habitat for chum salmon (Oncorhynchus keta) in the Western Arctic based on a bioenergetics model coupled with a three-dimensional lower trophic ecosystem model. Progress in Oceanography, 131, 146-158.
  • Hoskin, D. W., & Ramamoorthy, A., (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(2), 357-375.
  • Chen, H. M., Muramoto, K., Yamauchi, F., & Nokihara, K., (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of agricultural and food chemistry, 44(9), 2619-2623.
  • Wisuthiphaet, N., Klinchan, S., & Kongruang, S., (2016). Fish protein hydrolysate production by acid and enzymatic hydrolysis. Applied Science and Engineering Progress, 9(4).
  • Sgarbieri, V. C., (1987). Alimentaçäo e nutriçäo: fator de saúde e desenvolvimento. In Alimentaçäo e nutriçäo: fator de saúde e desenvolvimento (pp. 387-387).
  • Bhaskar, N., Mahendrakar, N.S., (2008). Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technology, 99, 4105–4111.
  • Seligson, F. H., Mackey, L. N., (1984). Variable predictions of protein quality by chemical score due to amino acid analysis and reference pattern. The Journal of Food Nutrition, 114, 682–691.
  • Shahidi, F., Han, X.Q., Synowiecki, J., (1995). Production ve Characteristics of Protein Hydrolysates from Capelin (Mallotus villosus). Food Chemistry, 53, 285-293.
  • Wu, H., Chen, H., Shiau, C., (2003). Free amino acids ve peptites as related to antioxidant properties in protein hydrolysates of Mackerel (Scomber austriasicus). Food Research International, (36), 949–957.
  • Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., Kim, S. K., (2005). Purification of a radicals cavenging peptite from fermented mussels auceveits antioxidant properties. Food Research International, 38, 175–182.
  • Mendis, E., Rajapakse, N., Kim, S., (2004). Antioxidant properties of a radicals cavenging peptite purified from enzymatically prepared fish skin gelatine hydrolysate. Journal of Agricultural and Food Chemistry, 53(3), 581–587.
  • Guerard, F., Sumaya-Martinez, M. T., (2003). Antioxidant effects of protein hydrolysates inthereaction with glucose. Journal of the American Oil Chemists' Society, 80(5), 467–470.
  • Sarmadi, B. H., & Ismail, A., (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949-1956.
There are 63 citations in total.

Details

Primary Language Turkish
Journal Section Review Article
Authors

Koray Korkmaz 0000-0003-2940-6592

Bahar Tokur 0000-0002-7087-5801

Publication Date June 1, 2021
Submission Date March 31, 2021
Acceptance Date April 26, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Korkmaz, K., & Tokur, B. (2021). Balık atıklarından üretilen protein hidrolizatının besinsel kompozisyonu. Turkish Journal of Maritime and Marine Sciences, 7(1), 27-39. https://doi.org/10.52998/trjmms.907350

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).