Research Article
BibTex RIS Cite

Balıkçı barınağındaki mikroplastik kirliliğinin belirlenmesinde Diadema setosum 'un gösterge olarak kullanılması

Year 2024, In Press Articles, 1 - 15
https://doi.org/10.52998/trjmms.1479819

Abstract

Bu çalışma, Diadema setosum'u biyoindikatör olarak kullanarak bir balıkçı barınağındaki potansiyel mikroplastik kontaminasyon riskini değerlendirmek amacıyla yapılmıştır. Mikroplastik (MP) kirlilik seviyeleri ve bunların deniz biyotası üzerindeki potansiyel etkileri, kıyı ve açık deniz ortamlarıyla karşılaştırıldığında hala bilinmemektedir. Bu amaçla 19 D. setosum bireyi toplanmış ve gastrointestinal sistem (GİS) ve gonaddaki mikroplastik bolluğu araştırılmıştır. GİS'teki ortalama mikroplastik bolluğu kişi başına 3,0 MPs±3,1 MP ve ıslak ağırlığın gramı başına 0,9±1,0 MP olarak bulundu. Gonaddaki ortalama mikroplastik miktarı birey başına 0,3±0,6 MP ve yaş ağırlık başına 0,08±0,2 MP olarak bulundu. Tüm MP'ler arasında, ekstrakte edilen MP'lerin %45'inin fiber, %44’ünün fragment ve %11’inin pellet olduğu bulunmuştur. Boyutla ilgili olarak, GIT'ten çıkarılan MP'lerin çoğunluğu ve gonaddan çıkarılan MP'lerin tümü küçük boyutlu MP'lerdi (boyutu 1 mm'den küçük). FTIR analizi, şüpheli parçacıkların plastik yapısını doğruladı ve yaygın polimer türü olarak polietilen (PE) (%50) ve polipropilen (PP) (%50) bulundu. Bu polimerler balık ağlarının üretiminde kullanılan başlıca polimerlerdir, dolayısıyla bu sonuç, çalışma alanındaki antropojenik etkiyi doğrulamaktadır. Bu çalışma, mikroplastiklerin deniz ürünleri ağına aktarımı konusundaki bilgi birikimine katkıda bulunmakta ve koruyucu ölçümlerin gerekliliğini vurgulamaktadır.

References

  • An, L., Liu, Q., Deng, Y., Wu, W., Gao, Y., Ling, W. (2020). Sources of microplastic in the environment. In: Microplastics in terrestrial environments: Emerging Contaminants and Major Challenges, 143-159. doi.org/10.1007/698_2020_449.
  • Bayed, A., Quiniou, F., Benrha, A., Guillou, M. (2005). The Paracentrotus lividus populations from the northern Moroccan Atlantic coast: growth, reproduction and health condition. Journal of the Marine Biological Association of the United Kingdom, 85(4): 999–1007. doi.org/10.1017/S0025315405012026.
  • Bertucci, J.I., Bellas, J. (2021). Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus). Science of the Total Environment, 782: 146888. doi.org/10.1016/j.scitotenv.2021.146888.
  • Bessa, F., Frias, J., Kögel, T., Lusher, A., Andrade, J.M., Antunes, J., Gerdts, G. (2019). Harmonized protocol for monitoring microplastics in biota. doi.org/10.13140/RG.2.2.28588.72321/1.
  • Boudouresque, F.C., Verlaque, M. (2007). Ecology of Paracentrotus lividus. In: Developments in Aquaculture and Fisheries Science. Elsevier. 2007. pp. 243–85.
  • Carpenter, E.J., Anderson, S.J., Harvey, G.R., Miklas, H.P., Peck, B.B. (1972). Polystyrene spherules in coastal waters. Science, 178(4062): 749-750. doi. org/10.1126/science.178.4062.749.
  • Compa, M., Alomar, C., Wilcox, C., Van Sebille, E., Lebreton, L., Hardesty, B.D., Deudero, S. (2019). Risk assessment of plastic pollution on marine diversity in the Mediterranean Sea. Science of The Total Environment, 678: 188-196. doi.org/ 10.1016/j.scitotenv.2019.04.355.
  • de Sa, L.C., Oliveira, M., Ribeiro, F., Rocha, T.L., Futter, M.N. (2018). Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of The Total Environment, 645: 1029–1039. doi.org/10.1016/j.scitotenv.2018.07.207.
  • De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Coore- man, K., Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine Pollution Bulletin, 85(1): 146–155. doi.org/10.1016/j.marpolbul.2014.06.006.
  • De-la-Torre, G.E., Dioses-Salinas, D.C., Huamantupa-Aybar, S., Davila-Carrasco, J. (2020). Preliminary observations of plastic debris in the gastrointestinal tract of sea urchin Tetrapygus niger. Brazilian Journal of Natural Sciences, 3(2): 316-320. doi.org/10.31415/bjns.v3i2.94.
  • Dethiera, M.N., Hoinsb, G., Kobeltc, J., Lowed, A.T., Gallowaye, A.W.E., Schrame, J.B., Raymoref, M., Duggins, D.O. (2019). Feces as food: the nutritional value of urchin feces and implications for benthic food webs. Journal of Experimental Marine Biology and Ecology, 514–515: 95–102. doi.org/10.1016/j.jembe.2019.03.016.
  • Di Natale, M.V., Carroccio, S.C., Dattilo, S., Cocca, M., Nicosia, A., Torri, M., Bennici, C.D., Musco, M., Masullo, T., Russo, S., Mazzola, A., Cuttitta, A. (2022). Polymer aging affects the bioavailability of microplastics-associated contaminants in sea urchin embryos. Chemosphere, 309(P1): 136720. doi.org/10.1016/j.chemosphere.2022.136720.
  • Everaert, G., De Rijcke, M., Lonneville, B., Janssen, C.R., Backhaus, T., Mees, J., van Sebille, E., Koelmans, A.A., Catarino, A.I., Vandegehuchte, M.B. (2020). Risks of floating microplastic in the global ocean. Environmental Pollution, 267: 115499. doi. org/10.1016/j.envpol.2020.115499.
  • Feng, Z., Wang, R., Zhang, T., Wang, J., Huang, W., Li, J., Xu, J., Gao, G. (2020). Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China. Science of The Total Environment, 728. doi.org/10.1016/j.scitotenv.2020.138660.
  • Giani, D., Baini, M., Galli, M., Casini, S., Fossi, M.C. (2019). Microplastics occurrence in edible fish species (Mullus barbatus and Merluccius merluccius) collected in three different geographical sub-areas of the Mediterranean Sea. Marine Pollution Bulletin, 140: 129–137. doi.org/10.1016/j.marpolbul.2019.01.005.
  • Gündoğdu, S., Çevik, C. (2017). Micro-and mesoplastics in Northeast Levantine coast of Turkey: The preliminary results from surface samples. Marine Pollution Bulletin, 118(1-2): 341-347. doi.org /10.1016/j.marpolbul.2017.03.002.
  • Gutow, L., Eckerlebe, A., Gim´enez, L., Saborowski, R. (2016). Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environmental Science & Technology, 50: 915–923. doi.org/10.1021/acs.est.5b02431.
  • Güven, O., Gokdag, K., Jovanovic, B., Kideys, A.E. (2017). Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environmental Pollution, 223: 286–294. doi.org/10.1016/j.envpol.2017.01.025.
  • Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1) 1-9.
  • Hanke, G., Galgani, F., Werner, S., Oosterbaan, L., Nilsson, P., Fleet, D., Kinsey, S., Thompson, R., Van Franeker, J.A., Vlachogianni, T., Palatinus, A., Scoullos, M., Veiga, J.M., Matiddi, M., Alcaro, L., Maes, T., Korpinen, S., Budziak, A., Leslie,
  • H., Gago, J., Liebezeit, G. (2013). Guidance on Monitoring of Marine Litter in European Seas. European Commission. Accessed Date: 18.06.2023, http://hdl.handle.net/10508/1649 is retrieved.
  • Hennicke, A., Macrina, L., Malcolm-Mckay, A., Miliou, A. (2021). Assessment of microplastic accumulation in wild Paracentrotus lividus, a commercially important sea urchin species, in the Eastern Aegean Sea, Greece. Regional Studies in Marine Science, 45: 101855. doi.org/10.1016/j.rsma.2021.101855.
  • Huseini, D.R., Suryanda, A., Patria, M.P. (2021). Comparative analysis of microplastic content in water, sediments, and digestive traces of sea urchin Diadema setosum (Leske, 1778) on Untung Jawa Island and Tidung Island, Seribu Islands, Jakarta. IOP Conference Series: Materials Science and Engineering, 1098(5), 052051. doi.org/10.1088/1757-899x/1098/5/052051.
  • Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science 347(6223): 768–771. doi. org/10.1126/science.1260352.
  • Jâms, I.B., Windsor, F.M., Poudevigne-Durance, T., Ormerod, S.J., Durance, I. (2020). Estimating the size distribution of plastics ingested by animals. Nature Communications, 11: 1-7. doi.org/10.1038/s41467-020-15406-6.
  • Kılıç, E., Yücel, N. (2022). Microplastic occurrence in the gastrointestinal tract and gill of bioindicator fish species in the northeastern Mediterranean. Marine Pollution Bulletin, 177: 113556. doi.org/10.1016/j.marpolbul.2022.113556.
  • Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A.M., Sanden, M. (2020). Micro- and nanoplastic toxicity on aquatic life: determining factors. Science of The Total Environment, 709: 136050. doi.org/10.1016/j.scitotenv.2019.136050.
  • Koongolla, J.B., Lin, L., Pan, Y.F., Yang, C.P., Sun, D.R., Liu, S., Xu, X.R., Maharana, D., Huang, J.S., Li, H.X. (2020). Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environmental Pollution, 258: 113734. doi.org/10.1016/j.envpol.2019.113734.
  • Koraltan, İ., Mavruk, S., Güven, O. (2022). Effect of biological and environmental factors on microplastic ingestion of commercial fish species. Chemosphere, 303: 135101. doi.org/10.1016/j.chemosphere.2022.135101.
  • Lawrence, J.M. (2001). Edible Sea Urchins: Biology and Ecology. Elsevier. Lawrence, J.M., 2013. Sea Urchins: Biology and Ecology. Academic Press.
  • Lebreton, L., Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5: 6. doi.org/10.1057/s41599-018-0212- 7.
  • Leddy, H.A., Johnson, A.S. (2000). Walking versus breathing: mechanical differentiation of sea urchin podia corresponds to functional specialization. Biology Bulletin, 198(1): 88–93. doi.org/10.2307/1542806.
  • Lyons, D.M., Thomas, P.J., Oral, R., Pagano, G., Tez, S., Toscanesi, M., Ranier, P., Trifuoggi, M. (2021). Impact of polystyrene and polymethylmethacrylate microplastics on sea urchin Paracentrotus lividus embryogenesis. Nanotoxicology and microplastics Arh Hig Rada Toksikol. 72: 75.
  • Manzo, S., Schiavo, S. (2022). Physical and chemical threats posed by micro (nano) plastic to sea urchins. Science of The Total Environment, 808: 152105. doi.org/10.1016/j.scitotenv.2021.152105.
  • Manzoor, S., Naqash, N., Rashid, G., Singh, R. (2022). Plastic material degradation and formation of microplastic in the environment: a review. Materials Today: Proceedings, 56: 3254-3260.
  • Murano, C., Agnisola, C., Caramiello, D., Castellano, I., Casotti, R., Corsi, I., Palumbo, A. (2020). How sea urchins face microplastics: Uptake, tissue distribution and immune system response. Environmental Pollution, 264: 114685. doi.org/10.1016/j.envpol.2020.114685.
  • Murano, C., Nonnis, S., Grassi, F., Maffioli, E., Corsi, I., Tedeschi, G., Palumbo, A. (2023). Response to microplastic exposure : An exploration into the sea urchin immune cell proteome. Environmental Pollution, 320: 121062. doi.org/10.1016/j.envpol.2023.121062.
  • Nelms, S.E., Duncan, E.M., Patel, S., Badola, R., Bhola, S., Chakma, S., Chowdhury, G.W., Godley, B.J., Haque, A.B., Johnson, J.A., Khatoon, H., Kumar, S., Napper, I.E., Niloy, M.N.H., Akter, T., Badola, S., Dev, A., Rawat, S., Santillo, D., Sarker, S., Sharma, E., Koldewey, H. (2021). Riverine plastic pollution from fisheries: insights from the Ganges River system. Science of The Total Environment, 756: 143305. doi.org/10.1016/j.scitotenv.2020.143305.
  • Nyawira, A.M., McClanahan, T.R. (2020). Chapter 3: Diedama. Elsevier B.V. doi.org/10.1016/B978-0-12-819570-3.00023-8.
  • Papadimitriu, M., Allinson, G. (2022). Microplastics in the Mediterranean marine environment: a combined bibliometric and systematic analysis to identify current trends and challenges. Microplastics Nanoplastics, 2(1): 1-25, doi.org /10.1186/s43591-022-00026-2.
  • Peng, X., Chen, M., Chen, S., Dasgupta, S., Xu, H., Ta, K., Du, M., Li, J., Guo, Z., Bai, S. (2018). Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspectives Letters, 9(1): 1-5. doi.org/10.7185/geochemlet.1829.
  • Pinheiro, L.M., do Sul, J.A.I., Costa, M.F. (2020). Uptake and ingestion are the main pathways for microplastics to enter marine benthos: A review. Food Webs, 24: e00150. doi.org/10.1016/j.fooweb.2020.e00150.
  • Porter, A., Smith, K.E., Lewis, C. (2019). The sea urchin Paracentrotus lividus as a bioeroder of plastic. Science of The Total Environment, 693: 133621. doi.org/10.1016/j.scitotenv.2019.133621.
  • Pyl, M., Taylor, A., Oberhänsli, F., Swarzenski, P., Hussamy, L., Besson, M., Danis, B., Metian, M. (2022). Size-dependent transfer of microplastics across the intestinal wall of the echinoid Paracentrotus lividus. Aquatic Toxicology, 250: 106235. doi.org/10.1016/j.aquatox.2022.106235.
  • Rahmawati Krisanti, M., Riani, E., Cordova, M.R. (2023). Microplastic contamination in the digestive tract of sea urchins (Echinodermata: Echinoidea) in Kepulauan Seribu, Indonesia. Environmental Monitoring and Assessment, 195(9): 1103. doi.org/10.1007/s10661-023-11655-2.
  • Rendell-Bhatti, F., Paganos, P., Pouch, A., Mitchell, C., D’Aniello, S., Godley, B.J., Pazdro, K., Arnone, M.I., Jimenez-Guri, E. (2021). Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus. Environmental Pollution, 269: 115744. doi.org/10.1016/j.envpol.2020.115744.
  • Rial, D., Bellas, J., Vidal-Liñán, L., Santos-Echeandía, J., Campillo, J.A., León, V.M., Albentosa, M. (2023). Microplastics increase the toxicity of mercury, chlorpyrifos and fluoranthene to mussel and sea urchin embryos. Environmental Pollution, 336 (August): 122410. doi.org/10.1016/j.envpol.2023.122410.
  • Richardson, C.R., Burritt, D.J., Allan, B.J.M., Lamare, M.D. (2021). Microplastic ingestion induces asymmetry and oxidative stress in larvae of the sea urchin Pseudechinus huttoni. Marine Pollution Bulletin, 168 (December 2020), 112369. doi.org/10.1016/j.marpolbul.2021.112369.
  • Smith, M., Love, D.C., Rochman, C.M., Neff, R.A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375–386. doi.org/10.1007/s40572-018-0206-z.
  • Soualili, D., Dubois, P., Gosselin, P., Pernet, P., Guillou, M. (2008). Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin, Paracentrotus lividus, as a bioindicator. ICES Journal of Marine Science, 65(2): 132–139. doi.org/10.1093/icesjms/fsm183.
  • Stefánsson, G., Kristinsson, H., Ziemer, N., Hannon, C., James, P. (2017). Markets for sea urchins: a review of global supply and markets. Skýrsla Matís, 45: 10-17. doi.org/10.13140/RG.2.2.12657.99683.
  • Suaria, G., Avio, C.G., Mineo, A., Lattin, G.L., Magaldi, M.G., Belmonte, G., Moore, C.J., Regoli, F., Aliani, S. (2016). The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Scientific Reports, 6: 37551. doi.org/10.1038/srep37551.
  • Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C., Mytilineou, C. (2016). Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Marine Pollution Bulletin, 113(2016): 55e61. doi.org/10.1016/j.marpolbul.2016.07.050.
  • Welden, N.A., Cowie, P.R. (2017). Degradation of common polymer ropes in a sublittoral marine environment. Marine Pollution Bulletin, 118(2017), 248-253. doi.org/10.1016/j.marpolbul.2017.02.072.
  • Wright, S.L., Thompson, R.C., Galloway, T.S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178: 483-492. doi.org/10.1016/j.envpol.2013.02.031.
  • Wright, L.S., Napper, I.E., Thompson, R.C. (2021). Potential microplastic release from beached fishing gear in Great Britain's region of highest fishing litter density. Marine Pollution Bulletin, 173: 113115. doi.org/10.1016/j.marpolbul.2021.113115.
  • Xue, B., Zhang, L., Li, R., Wang, Y., Guo, J., Yu, K., Wang, S. (2020). Underestimated microplastic pollution derived from fishery activities and “hidden” in deep sediment. Environmental Science & Technology, 54(4): 2210-2217. doi.org/10.1021/acs.est.9b04850.
  • Yücel, N., Kılıç, E. (2023a). Presence of microplastic in the Patella caerulea from the northeastern Mediterranean Sea. Marine Pollution Bulletin, 188: 114684. doi.org/10.1016/j.marpolbul.2023.114684.
  • Yücel, N., Kılıç, E. (2023b). Spatial Distribution of Microplastic Contamination in the Invasive Red Sea Mussel Brachidontes pharaonis (Fischer P., 1870) Around the İskenderun Bay. Journal of Agricultural Production, 4(1): 7-15. doi.org/10.56430/japro.1232650.

Usage of Diadema setosum as a bioindicator of microplastic pollution in fishing barns

Year 2024, In Press Articles, 1 - 15
https://doi.org/10.52998/trjmms.1479819

Abstract

This study is undertaken to evaluate potential risk of microplastic contamination in a fishing barn by using Diadema setosum as a bioindicator. Microplastic (MP) pollution levels and their potential impacts on marine biota are still unknown compared to coastal and offshore environments. For this purpose, 19 individuals of D. setosum were collected and microplastic abundance in the gastrointestinal tract (GIT) and gonad were investigated. Mean microplastic abundance in GIT was found as 3.0 MPs±3.1 MPs per individual and 0.9±1.0 MPs per g wet weight. Mean microplastic abundance in the gonad was found as 0.3±0.6 MPs per individual and 0.08±0.2 MPs per g wet weight. Among all MPs, 45% of extracted MPs were fiber and followed by fragment (44%) and pellet (11%). Regarding size, majority of the MPs extracted from GIT and all of the MPs extracted from gonad were small size MPs (less than 1 mm in size). FTIR analysis validated the plastic nature of suspected particles and polyethylene (PE) (50%) and polypropylene (PP) (50%) were found as the common type of polymers. These polymers are main polymers used in the production of fishing nets; therefore, this result seems to validate the anthropogenic influence in the study area. This study contributes to the knowledge of the transfer of microplastics to the marine food web and highlights the need for protective measurements.

References

  • An, L., Liu, Q., Deng, Y., Wu, W., Gao, Y., Ling, W. (2020). Sources of microplastic in the environment. In: Microplastics in terrestrial environments: Emerging Contaminants and Major Challenges, 143-159. doi.org/10.1007/698_2020_449.
  • Bayed, A., Quiniou, F., Benrha, A., Guillou, M. (2005). The Paracentrotus lividus populations from the northern Moroccan Atlantic coast: growth, reproduction and health condition. Journal of the Marine Biological Association of the United Kingdom, 85(4): 999–1007. doi.org/10.1017/S0025315405012026.
  • Bertucci, J.I., Bellas, J. (2021). Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus). Science of the Total Environment, 782: 146888. doi.org/10.1016/j.scitotenv.2021.146888.
  • Bessa, F., Frias, J., Kögel, T., Lusher, A., Andrade, J.M., Antunes, J., Gerdts, G. (2019). Harmonized protocol for monitoring microplastics in biota. doi.org/10.13140/RG.2.2.28588.72321/1.
  • Boudouresque, F.C., Verlaque, M. (2007). Ecology of Paracentrotus lividus. In: Developments in Aquaculture and Fisheries Science. Elsevier. 2007. pp. 243–85.
  • Carpenter, E.J., Anderson, S.J., Harvey, G.R., Miklas, H.P., Peck, B.B. (1972). Polystyrene spherules in coastal waters. Science, 178(4062): 749-750. doi. org/10.1126/science.178.4062.749.
  • Compa, M., Alomar, C., Wilcox, C., Van Sebille, E., Lebreton, L., Hardesty, B.D., Deudero, S. (2019). Risk assessment of plastic pollution on marine diversity in the Mediterranean Sea. Science of The Total Environment, 678: 188-196. doi.org/ 10.1016/j.scitotenv.2019.04.355.
  • de Sa, L.C., Oliveira, M., Ribeiro, F., Rocha, T.L., Futter, M.N. (2018). Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of The Total Environment, 645: 1029–1039. doi.org/10.1016/j.scitotenv.2018.07.207.
  • De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Coore- man, K., Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine Pollution Bulletin, 85(1): 146–155. doi.org/10.1016/j.marpolbul.2014.06.006.
  • De-la-Torre, G.E., Dioses-Salinas, D.C., Huamantupa-Aybar, S., Davila-Carrasco, J. (2020). Preliminary observations of plastic debris in the gastrointestinal tract of sea urchin Tetrapygus niger. Brazilian Journal of Natural Sciences, 3(2): 316-320. doi.org/10.31415/bjns.v3i2.94.
  • Dethiera, M.N., Hoinsb, G., Kobeltc, J., Lowed, A.T., Gallowaye, A.W.E., Schrame, J.B., Raymoref, M., Duggins, D.O. (2019). Feces as food: the nutritional value of urchin feces and implications for benthic food webs. Journal of Experimental Marine Biology and Ecology, 514–515: 95–102. doi.org/10.1016/j.jembe.2019.03.016.
  • Di Natale, M.V., Carroccio, S.C., Dattilo, S., Cocca, M., Nicosia, A., Torri, M., Bennici, C.D., Musco, M., Masullo, T., Russo, S., Mazzola, A., Cuttitta, A. (2022). Polymer aging affects the bioavailability of microplastics-associated contaminants in sea urchin embryos. Chemosphere, 309(P1): 136720. doi.org/10.1016/j.chemosphere.2022.136720.
  • Everaert, G., De Rijcke, M., Lonneville, B., Janssen, C.R., Backhaus, T., Mees, J., van Sebille, E., Koelmans, A.A., Catarino, A.I., Vandegehuchte, M.B. (2020). Risks of floating microplastic in the global ocean. Environmental Pollution, 267: 115499. doi. org/10.1016/j.envpol.2020.115499.
  • Feng, Z., Wang, R., Zhang, T., Wang, J., Huang, W., Li, J., Xu, J., Gao, G. (2020). Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China. Science of The Total Environment, 728. doi.org/10.1016/j.scitotenv.2020.138660.
  • Giani, D., Baini, M., Galli, M., Casini, S., Fossi, M.C. (2019). Microplastics occurrence in edible fish species (Mullus barbatus and Merluccius merluccius) collected in three different geographical sub-areas of the Mediterranean Sea. Marine Pollution Bulletin, 140: 129–137. doi.org/10.1016/j.marpolbul.2019.01.005.
  • Gündoğdu, S., Çevik, C. (2017). Micro-and mesoplastics in Northeast Levantine coast of Turkey: The preliminary results from surface samples. Marine Pollution Bulletin, 118(1-2): 341-347. doi.org /10.1016/j.marpolbul.2017.03.002.
  • Gutow, L., Eckerlebe, A., Gim´enez, L., Saborowski, R. (2016). Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environmental Science & Technology, 50: 915–923. doi.org/10.1021/acs.est.5b02431.
  • Güven, O., Gokdag, K., Jovanovic, B., Kideys, A.E. (2017). Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environmental Pollution, 223: 286–294. doi.org/10.1016/j.envpol.2017.01.025.
  • Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1) 1-9.
  • Hanke, G., Galgani, F., Werner, S., Oosterbaan, L., Nilsson, P., Fleet, D., Kinsey, S., Thompson, R., Van Franeker, J.A., Vlachogianni, T., Palatinus, A., Scoullos, M., Veiga, J.M., Matiddi, M., Alcaro, L., Maes, T., Korpinen, S., Budziak, A., Leslie,
  • H., Gago, J., Liebezeit, G. (2013). Guidance on Monitoring of Marine Litter in European Seas. European Commission. Accessed Date: 18.06.2023, http://hdl.handle.net/10508/1649 is retrieved.
  • Hennicke, A., Macrina, L., Malcolm-Mckay, A., Miliou, A. (2021). Assessment of microplastic accumulation in wild Paracentrotus lividus, a commercially important sea urchin species, in the Eastern Aegean Sea, Greece. Regional Studies in Marine Science, 45: 101855. doi.org/10.1016/j.rsma.2021.101855.
  • Huseini, D.R., Suryanda, A., Patria, M.P. (2021). Comparative analysis of microplastic content in water, sediments, and digestive traces of sea urchin Diadema setosum (Leske, 1778) on Untung Jawa Island and Tidung Island, Seribu Islands, Jakarta. IOP Conference Series: Materials Science and Engineering, 1098(5), 052051. doi.org/10.1088/1757-899x/1098/5/052051.
  • Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science 347(6223): 768–771. doi. org/10.1126/science.1260352.
  • Jâms, I.B., Windsor, F.M., Poudevigne-Durance, T., Ormerod, S.J., Durance, I. (2020). Estimating the size distribution of plastics ingested by animals. Nature Communications, 11: 1-7. doi.org/10.1038/s41467-020-15406-6.
  • Kılıç, E., Yücel, N. (2022). Microplastic occurrence in the gastrointestinal tract and gill of bioindicator fish species in the northeastern Mediterranean. Marine Pollution Bulletin, 177: 113556. doi.org/10.1016/j.marpolbul.2022.113556.
  • Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A.M., Sanden, M. (2020). Micro- and nanoplastic toxicity on aquatic life: determining factors. Science of The Total Environment, 709: 136050. doi.org/10.1016/j.scitotenv.2019.136050.
  • Koongolla, J.B., Lin, L., Pan, Y.F., Yang, C.P., Sun, D.R., Liu, S., Xu, X.R., Maharana, D., Huang, J.S., Li, H.X. (2020). Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environmental Pollution, 258: 113734. doi.org/10.1016/j.envpol.2019.113734.
  • Koraltan, İ., Mavruk, S., Güven, O. (2022). Effect of biological and environmental factors on microplastic ingestion of commercial fish species. Chemosphere, 303: 135101. doi.org/10.1016/j.chemosphere.2022.135101.
  • Lawrence, J.M. (2001). Edible Sea Urchins: Biology and Ecology. Elsevier. Lawrence, J.M., 2013. Sea Urchins: Biology and Ecology. Academic Press.
  • Lebreton, L., Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5: 6. doi.org/10.1057/s41599-018-0212- 7.
  • Leddy, H.A., Johnson, A.S. (2000). Walking versus breathing: mechanical differentiation of sea urchin podia corresponds to functional specialization. Biology Bulletin, 198(1): 88–93. doi.org/10.2307/1542806.
  • Lyons, D.M., Thomas, P.J., Oral, R., Pagano, G., Tez, S., Toscanesi, M., Ranier, P., Trifuoggi, M. (2021). Impact of polystyrene and polymethylmethacrylate microplastics on sea urchin Paracentrotus lividus embryogenesis. Nanotoxicology and microplastics Arh Hig Rada Toksikol. 72: 75.
  • Manzo, S., Schiavo, S. (2022). Physical and chemical threats posed by micro (nano) plastic to sea urchins. Science of The Total Environment, 808: 152105. doi.org/10.1016/j.scitotenv.2021.152105.
  • Manzoor, S., Naqash, N., Rashid, G., Singh, R. (2022). Plastic material degradation and formation of microplastic in the environment: a review. Materials Today: Proceedings, 56: 3254-3260.
  • Murano, C., Agnisola, C., Caramiello, D., Castellano, I., Casotti, R., Corsi, I., Palumbo, A. (2020). How sea urchins face microplastics: Uptake, tissue distribution and immune system response. Environmental Pollution, 264: 114685. doi.org/10.1016/j.envpol.2020.114685.
  • Murano, C., Nonnis, S., Grassi, F., Maffioli, E., Corsi, I., Tedeschi, G., Palumbo, A. (2023). Response to microplastic exposure : An exploration into the sea urchin immune cell proteome. Environmental Pollution, 320: 121062. doi.org/10.1016/j.envpol.2023.121062.
  • Nelms, S.E., Duncan, E.M., Patel, S., Badola, R., Bhola, S., Chakma, S., Chowdhury, G.W., Godley, B.J., Haque, A.B., Johnson, J.A., Khatoon, H., Kumar, S., Napper, I.E., Niloy, M.N.H., Akter, T., Badola, S., Dev, A., Rawat, S., Santillo, D., Sarker, S., Sharma, E., Koldewey, H. (2021). Riverine plastic pollution from fisheries: insights from the Ganges River system. Science of The Total Environment, 756: 143305. doi.org/10.1016/j.scitotenv.2020.143305.
  • Nyawira, A.M., McClanahan, T.R. (2020). Chapter 3: Diedama. Elsevier B.V. doi.org/10.1016/B978-0-12-819570-3.00023-8.
  • Papadimitriu, M., Allinson, G. (2022). Microplastics in the Mediterranean marine environment: a combined bibliometric and systematic analysis to identify current trends and challenges. Microplastics Nanoplastics, 2(1): 1-25, doi.org /10.1186/s43591-022-00026-2.
  • Peng, X., Chen, M., Chen, S., Dasgupta, S., Xu, H., Ta, K., Du, M., Li, J., Guo, Z., Bai, S. (2018). Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspectives Letters, 9(1): 1-5. doi.org/10.7185/geochemlet.1829.
  • Pinheiro, L.M., do Sul, J.A.I., Costa, M.F. (2020). Uptake and ingestion are the main pathways for microplastics to enter marine benthos: A review. Food Webs, 24: e00150. doi.org/10.1016/j.fooweb.2020.e00150.
  • Porter, A., Smith, K.E., Lewis, C. (2019). The sea urchin Paracentrotus lividus as a bioeroder of plastic. Science of The Total Environment, 693: 133621. doi.org/10.1016/j.scitotenv.2019.133621.
  • Pyl, M., Taylor, A., Oberhänsli, F., Swarzenski, P., Hussamy, L., Besson, M., Danis, B., Metian, M. (2022). Size-dependent transfer of microplastics across the intestinal wall of the echinoid Paracentrotus lividus. Aquatic Toxicology, 250: 106235. doi.org/10.1016/j.aquatox.2022.106235.
  • Rahmawati Krisanti, M., Riani, E., Cordova, M.R. (2023). Microplastic contamination in the digestive tract of sea urchins (Echinodermata: Echinoidea) in Kepulauan Seribu, Indonesia. Environmental Monitoring and Assessment, 195(9): 1103. doi.org/10.1007/s10661-023-11655-2.
  • Rendell-Bhatti, F., Paganos, P., Pouch, A., Mitchell, C., D’Aniello, S., Godley, B.J., Pazdro, K., Arnone, M.I., Jimenez-Guri, E. (2021). Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus. Environmental Pollution, 269: 115744. doi.org/10.1016/j.envpol.2020.115744.
  • Rial, D., Bellas, J., Vidal-Liñán, L., Santos-Echeandía, J., Campillo, J.A., León, V.M., Albentosa, M. (2023). Microplastics increase the toxicity of mercury, chlorpyrifos and fluoranthene to mussel and sea urchin embryos. Environmental Pollution, 336 (August): 122410. doi.org/10.1016/j.envpol.2023.122410.
  • Richardson, C.R., Burritt, D.J., Allan, B.J.M., Lamare, M.D. (2021). Microplastic ingestion induces asymmetry and oxidative stress in larvae of the sea urchin Pseudechinus huttoni. Marine Pollution Bulletin, 168 (December 2020), 112369. doi.org/10.1016/j.marpolbul.2021.112369.
  • Smith, M., Love, D.C., Rochman, C.M., Neff, R.A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375–386. doi.org/10.1007/s40572-018-0206-z.
  • Soualili, D., Dubois, P., Gosselin, P., Pernet, P., Guillou, M. (2008). Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin, Paracentrotus lividus, as a bioindicator. ICES Journal of Marine Science, 65(2): 132–139. doi.org/10.1093/icesjms/fsm183.
  • Stefánsson, G., Kristinsson, H., Ziemer, N., Hannon, C., James, P. (2017). Markets for sea urchins: a review of global supply and markets. Skýrsla Matís, 45: 10-17. doi.org/10.13140/RG.2.2.12657.99683.
  • Suaria, G., Avio, C.G., Mineo, A., Lattin, G.L., Magaldi, M.G., Belmonte, G., Moore, C.J., Regoli, F., Aliani, S. (2016). The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Scientific Reports, 6: 37551. doi.org/10.1038/srep37551.
  • Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C., Mytilineou, C. (2016). Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Marine Pollution Bulletin, 113(2016): 55e61. doi.org/10.1016/j.marpolbul.2016.07.050.
  • Welden, N.A., Cowie, P.R. (2017). Degradation of common polymer ropes in a sublittoral marine environment. Marine Pollution Bulletin, 118(2017), 248-253. doi.org/10.1016/j.marpolbul.2017.02.072.
  • Wright, S.L., Thompson, R.C., Galloway, T.S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178: 483-492. doi.org/10.1016/j.envpol.2013.02.031.
  • Wright, L.S., Napper, I.E., Thompson, R.C. (2021). Potential microplastic release from beached fishing gear in Great Britain's region of highest fishing litter density. Marine Pollution Bulletin, 173: 113115. doi.org/10.1016/j.marpolbul.2021.113115.
  • Xue, B., Zhang, L., Li, R., Wang, Y., Guo, J., Yu, K., Wang, S. (2020). Underestimated microplastic pollution derived from fishery activities and “hidden” in deep sediment. Environmental Science & Technology, 54(4): 2210-2217. doi.org/10.1021/acs.est.9b04850.
  • Yücel, N., Kılıç, E. (2023a). Presence of microplastic in the Patella caerulea from the northeastern Mediterranean Sea. Marine Pollution Bulletin, 188: 114684. doi.org/10.1016/j.marpolbul.2023.114684.
  • Yücel, N., Kılıç, E. (2023b). Spatial Distribution of Microplastic Contamination in the Invasive Red Sea Mussel Brachidontes pharaonis (Fischer P., 1870) Around the İskenderun Bay. Journal of Agricultural Production, 4(1): 7-15. doi.org/10.56430/japro.1232650.
There are 59 citations in total.

Details

Primary Language English
Subjects Water Invertebrates
Journal Section Research Article
Authors

Ece Kılıç 0000-0003-1953-5008

Erkan Uğurlu 0000-0001-8940-8421

Early Pub Date August 10, 2024
Publication Date
Submission Date May 7, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2024 In Press Articles

Cite

APA Kılıç, E., & Uğurlu, E. (2024). Usage of Diadema setosum as a bioindicator of microplastic pollution in fishing barns. Turkish Journal of Maritime and Marine Sciences1-15. https://doi.org/10.52998/trjmms.1479819

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).