Research Article
BibTex RIS Cite

Pre-eşitlenmiş UVLC bağlantılarının eski lognormal türbülans kanalları üzerindeki performans değerlendirmesi

Year 2024, Volume: 10 Issue: Özel Sayı: 1, 19 - 30, 03.10.2024
https://doi.org/10.52998/trjmms.1516839

Abstract

Su altı görünür ışık iletişimi (UVLC), dalgıçtan dalgıca bilgi paylaşımı, petrol sahası keşfi, liman güvenliği, su altı gözetim sistemleri ve çevresel izleme gibi çeşitli su altı uygulamaları için önemlidir. Ancak, UVLC bağlantılarının su altı optik türbülansından (UOT) büyük ölçüde etkilendiği unutulmamalıdır. Bu durum, solma etkilerini azaltmak için mevcut kanal durumu bilgisine (CSI) dayalı olarak iletim gücünde sık sık ayarlamalar yapılmasını gerektirebilir. Dalgıçtan dalgıca bağlantılar gibi bazı uygulamalarda, iletim ve/veya alıcı düğümlerin yarı sabit pozisyonlarından kaynaklanan iletim çerçeveleri arasındaki kanal katsayısındaki yarı statik değişiklikler, iletim gücü seçiminin eski kanal verilerine dayanmasına yol açabilir. Bu çalışmada, iletim gücünün ayarlanmasında eski kanal bilgilerinin kullanılmasının hata oranı performansındaki bozulmayı araştırıyoruz. Özellikle, eski lognormal türbülans kanalları üzerinden önceden eşitlenmiş bir UVLC bağlantısı için bit hata oranı (BER) için kapalı formda bir ifade türetiyoruz. Türettiğimiz ifadeyi Monte Carlo simülasyonları kullanarak doğruluyoruz.

References

  • Abramowitz, M., Stegun, I.A. (1972). Handbook of Mathematical Functions. US Govt. printing, USA, 10 edition.
  • Agarwal, A., Singh, K. (2023). Energy-efficient UOWC-RF systems with SLIPT. Transactions on Emerging Telecommunications Technologies e4889.
  • Alqurashi, F.S., Trichili, A., Saeed, N., Ooi, B.S., Alouini, M.S. (2023). Maritime communications: A survey on enabling technologies, opportunities, and challenges. IEEE Internet Things J. 10(4): 3525–3547.
  • Ata, Y., Abumarshoud, H., Bariah, L., Muhaidat, S., Imran, M.A. (2023). Intelligent reflecting surfaces for underwater visible light communications. IEEE Photonics J 15(1): 1–10.
  • Bernotas, M., Nelson, C. (2015). Probability density function analysis for optimization of underwater optical communications systems. In OCEANS 2015 - MTS/IEEE Washington, pp.1–8.
  • Celik, A., Romdhane, I., Kaddoum, G., Eltawil, A.M. (2023). A top-down survey on optical wireless communications for the internet of things. IEEE Commun. Surv. Tutor. 25(1): 1–45.
  • Drew, J.H., Evans, D.L., Glen, A.G., Leemis, L.M. (2017). Computational Probability: Algorithms and Applications in the Mathematical Sciences. Springer Publishing Company, 2nd edition.
  • Elamassie, M., Al-Nahhal, M., Kizilirmak, R.C., Uysal, M. (2019). Transmit laser selection for underwater visible light communication systems. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6.
  • Elamassie, M., Miramirkhani, F., Uysal, M. (2019). Performance Characterization of Underwater Visible Light Communication. IEEE Trans. Commun. 67(1): 543-552.
  • Elamassie, M., Uysal, M. (2021). Feedback-free adaptive modulation selection algorithm for FSO systems. IEEE Wireless Commun. Lett. 10(9): 1964–1968.
  • Elamassie, M., Al-Shaikhi, A.A., Sait, S.M., Uysal, M. (2023). Multihop airborne FSO systems with relay selection over outdated log-normal turbulence channels. IEEE Trans. Veh. Technol. 1–13.
  • Elamassie, M., Geldard, C., Popoola, W. (2024). Underwater Visible Light Communication (UVLC). In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_62-1.
  • Ge, X., Zhu, X. (2023). Mathematical modeling of underwater signal anomaly perception based on multi-sensor data fusion. Journal of Computational Methods in Sciences and Engineering 23(1): 23–36.
  • Gubergrits, M., Goot, R.E., Mahlab, U., Arnon, S. (2007). Adaptive power control for satellite to ground laser communication. Int. J. Satellite Commun. Netw. 25(4): 349–362.
  • Gussen, C.M.G., Diniz, P.S.R., Campos, M.L.R., Martins, W.A., Gois, J.N. (2016). A survey of underwater wireless communication technologies. J. Commun. Inf. Sys. 31(1): 242–255.
  • Hu, Q., Huang, N., Gong, C. (2023). Superposition modulation for physical layer security in water-to-air visible light communication systems. J. Light. Technol. 41(10): 2976–2990.
  • Jamali, M.V., Khorramshahi, P., Tashakori, A., Chizari, A., Shahsavari, S., Abdollah Ramezani, S., Fazelian, M., Bahrani, S., Salehi, J.A. (2016). Statistical distribution of intensity fluctuations for underwater wireless optical channels in the presence of air bubbles. In Iran Workshop on Communication and Information Theory (IWCIT), pp. 1–6.
  • Jamali, M.V., Chizari, A., Salehi, J.A. (2017). Performance analysis of multi-hop underwater wireless optical communication systems. IEEE Photon. Technol. Lett. 29(5): 462–465.
  • Jamali, M.V., Mirani, A., Parsay, A., Abolhassani, B., Nabavi, P., Chizari, A., Khorramshahi, P., Abdollahramezani, S., Salehi, J.A. (2018). Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 66(10): 4706–4723.
  • Jamali, M.V., Nabavi, P., Salehi, J.A. (2018). MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection. IEEE Trans. Veh. Technol. 67(9): 8223–8237.
  • Jiang, H., Qiu, H., He, N., Popoola, W., Ahmad, Z., Rajbhandari, S. (2020). Performance of spatial diversity DCO-OFDM in a weak turbulence underwater visible light communication channel. J. Light. Technol. 38(8): 2271–2277.
  • Jiawei, H., Xiaoqian, L., Xinke, T., Yuhan, D. (2023). Trajectory planning of UUV-assisted UWOC systems based on DQN. Telecommunications Science 39(5).
  • Lu, H.H., Li, C.Y., Tsai, W.S., Chen, Y.X., Fan, W.C., Lin, Y.S., Peng, Y.E., Tang, Y.S. (2023). 5G-based triple-wavelength VLLC-UWLT and laboratory-lighting convergent systems. J. Light. Technol. 41(8): 2351–2360.
  • Mahmoodi, K.A., Uysal, M. (2022). Energy aware trajectory optimization of solar powered AUVs for optical underwater sensor networks. IEEE Transactions on Communications 70(12): 8258–8269. Memon, M.H., Yu, H., Jia, H., Fang, S., Wang, D., Zhang, H., Xiao, S., Kang, Y., Ding, Y., Gong, C., Sun, H. (2023). Quantum dots integrated deep ultraviolet micro-LED array toward solar-blind and visible light dual-band optical communication. IEEE Electron Device Lett. 44(3): 472–475.
  • Oubei, H.M., Zedini, E., ElAfandy, R.T., Kammoun, A., Abdallah, M., Ng, T.K., Hamdi, M., Alouini, M. S., Ooi, B.S. (2017). Simple statistical channel model for weak temperature induced turbulence in underwater wireless optical communication systems. Opt. Lett. 42(13): 2455–2458.
  • Qian, Y., Chen, C., Du, P., Liu, M. (2023). Hybrid space division multiple access and quasi-orthogonal multiple access for multi-user underwater visible light communication. IEEE Photonics Journal 15(4): 1–7.
  • Romeo, M., Da Costa, V., Bardou, F. (2013). Broad distribution effects in sums of lognormal random variables. Eur. Phys. J. 32(4): 513–525.
  • Saeed, N., Celik, A., Al-Naffouri, T.Y., Alouini, M.S. (2019). Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Networks 94: 101935.
  • Safi, H., Sharifi, A.A., Dabiri, M.T., Ansari, I.S., Cheng, J. (2019). Adaptive channel coding and power control for practical FSO communication systems under channel estimation error. IEEE Trans. Vehic. Technol. 68(8): 7566–7577.
  • Salam, R., Srivastava, A., Bohara, V.A., Ashok, A. (2023). An optical intelligent reflecting surface-assisted underwater wireless communication system. IEEE open j. Commun. Soc. 4: 1774–1786.
  • Shi, J., Niu, W., Li, Z., Shen, C., Zhang, J., Yu, S., Chi, N. (2023). Optimal adaptive waveform design utilizing an end-to-end learning-based pre-equalization neural network in an UVLC system. J. Light. Technol. 41(6): 1626–1636.
  • Solomon, C., Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons, New York, NY, USA, 1 edition.
  • Tang, S., Zhang, X., Dong, Y. (2013). Temporal statistics of irradiance in moving turbulent ocean. In MTS/IEEE OCEANS - Bergen, pp. 1–4.
  • Tang, Y., Ding, X., Li, Z., Shao, C., Huang, Z., Liang, S. (2023). Crosstalk-free MIMO VLC using two orthogonal polarizations multiplexed large FoV fluorescent antennas. IEEE Photon. Technol. Lett. 35(23): 1271–1274.
  • Vali, Z., Gholami, A., Ghassemlooy, Z., Omoomi, M., Michelson, D.G., (2018). Experimental study of the turbulence effect on underwater optical wireless communications. Appl. Opt. 57(28): 8314–8319.
  • Wang, K., Song, T., Wang, Y., Fang, C., He, J., Nirmalathas, A., Lim, C., Wong, E., Kandeepan, S. (2023). Evolution of short-range optical wireless communications. J. Light. Technol. 41(4): 1019–1040.
  • Wei, Z., Wei, Z., Fang, J., Pan, J., Wang, L., Dong, Y. (2023). Impulse response modeling and dynamic analysis for SIMO UOWC systems enhanced by RIS equipped UUV. IEEE Trans. Veh. Technol., pp. 1–14.
  • Weng, Y., Guo, Y., Alkhazragi, O., Ng, T.K., Guo, J.H., Ooi, B.S. (2019). Impact of turbulent-flow-induced scintillation on deep-ocean wireless optical communication. J. Light. Technol. 37(19): 5083–5090.
  • Yildiz, S., Baglica, I., Kebapci, B., Elamassie, M., Uysal, M. (2022). Reflector-aided underwater optical channel modeling. Opt. Lett. 47(20): 5321–5324.
  • Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Commun. Surveys Tuts. 19(1): 204–238.
  • Zhu, Z., Lei, L., Lin, T., Li, L., Lin, Z., Jiang, H., Li, G., Wang, W. (2023). Embedded electrode micro-LEDs with high modulation bandwidth for visible light communication. IEEE Trans. Electron Dev. 70(2): 588–593.

Performance evaluation of pre-equalized UVLC links over outdated lognormal turbulence channels

Year 2024, Volume: 10 Issue: Özel Sayı: 1, 19 - 30, 03.10.2024
https://doi.org/10.52998/trjmms.1516839

Abstract

Underwater visible light communication (UVLC) is important for various underwater applications, including diver-to-diver information sharing, oil field exploration, port security, underwater surveillance systems, and environmental monitoring. However, it should be remembered that UVLC links are strongly affected by underwater optical turbulence (UOT). This may necessitate frequent adjustments in transmit power based on current channel state information (CSI) to mitigate fading effects. In some applications, such as diver-to-diver links, the quasi-static variations in the channel coefficient between transmission frames—attributable to the semi-fixed positions of the transmitting and/or receiving nodes—lead to practical implementations of the transmit power selection that may rely on outdated CSI. In this paper, we investigate the degradation in error rate performance caused by the use of outdated channel information in setting transmit power. Especially, we derive a closed-form expression for the bit error rate (BER) for a pre-equalized UVLC link over outdated lognormal turbulence channels. We verify the derived expression using Monte Carlo simulations.

References

  • Abramowitz, M., Stegun, I.A. (1972). Handbook of Mathematical Functions. US Govt. printing, USA, 10 edition.
  • Agarwal, A., Singh, K. (2023). Energy-efficient UOWC-RF systems with SLIPT. Transactions on Emerging Telecommunications Technologies e4889.
  • Alqurashi, F.S., Trichili, A., Saeed, N., Ooi, B.S., Alouini, M.S. (2023). Maritime communications: A survey on enabling technologies, opportunities, and challenges. IEEE Internet Things J. 10(4): 3525–3547.
  • Ata, Y., Abumarshoud, H., Bariah, L., Muhaidat, S., Imran, M.A. (2023). Intelligent reflecting surfaces for underwater visible light communications. IEEE Photonics J 15(1): 1–10.
  • Bernotas, M., Nelson, C. (2015). Probability density function analysis for optimization of underwater optical communications systems. In OCEANS 2015 - MTS/IEEE Washington, pp.1–8.
  • Celik, A., Romdhane, I., Kaddoum, G., Eltawil, A.M. (2023). A top-down survey on optical wireless communications for the internet of things. IEEE Commun. Surv. Tutor. 25(1): 1–45.
  • Drew, J.H., Evans, D.L., Glen, A.G., Leemis, L.M. (2017). Computational Probability: Algorithms and Applications in the Mathematical Sciences. Springer Publishing Company, 2nd edition.
  • Elamassie, M., Al-Nahhal, M., Kizilirmak, R.C., Uysal, M. (2019). Transmit laser selection for underwater visible light communication systems. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6.
  • Elamassie, M., Miramirkhani, F., Uysal, M. (2019). Performance Characterization of Underwater Visible Light Communication. IEEE Trans. Commun. 67(1): 543-552.
  • Elamassie, M., Uysal, M. (2021). Feedback-free adaptive modulation selection algorithm for FSO systems. IEEE Wireless Commun. Lett. 10(9): 1964–1968.
  • Elamassie, M., Al-Shaikhi, A.A., Sait, S.M., Uysal, M. (2023). Multihop airborne FSO systems with relay selection over outdated log-normal turbulence channels. IEEE Trans. Veh. Technol. 1–13.
  • Elamassie, M., Geldard, C., Popoola, W. (2024). Underwater Visible Light Communication (UVLC). In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_62-1.
  • Ge, X., Zhu, X. (2023). Mathematical modeling of underwater signal anomaly perception based on multi-sensor data fusion. Journal of Computational Methods in Sciences and Engineering 23(1): 23–36.
  • Gubergrits, M., Goot, R.E., Mahlab, U., Arnon, S. (2007). Adaptive power control for satellite to ground laser communication. Int. J. Satellite Commun. Netw. 25(4): 349–362.
  • Gussen, C.M.G., Diniz, P.S.R., Campos, M.L.R., Martins, W.A., Gois, J.N. (2016). A survey of underwater wireless communication technologies. J. Commun. Inf. Sys. 31(1): 242–255.
  • Hu, Q., Huang, N., Gong, C. (2023). Superposition modulation for physical layer security in water-to-air visible light communication systems. J. Light. Technol. 41(10): 2976–2990.
  • Jamali, M.V., Khorramshahi, P., Tashakori, A., Chizari, A., Shahsavari, S., Abdollah Ramezani, S., Fazelian, M., Bahrani, S., Salehi, J.A. (2016). Statistical distribution of intensity fluctuations for underwater wireless optical channels in the presence of air bubbles. In Iran Workshop on Communication and Information Theory (IWCIT), pp. 1–6.
  • Jamali, M.V., Chizari, A., Salehi, J.A. (2017). Performance analysis of multi-hop underwater wireless optical communication systems. IEEE Photon. Technol. Lett. 29(5): 462–465.
  • Jamali, M.V., Mirani, A., Parsay, A., Abolhassani, B., Nabavi, P., Chizari, A., Khorramshahi, P., Abdollahramezani, S., Salehi, J.A. (2018). Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 66(10): 4706–4723.
  • Jamali, M.V., Nabavi, P., Salehi, J.A. (2018). MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection. IEEE Trans. Veh. Technol. 67(9): 8223–8237.
  • Jiang, H., Qiu, H., He, N., Popoola, W., Ahmad, Z., Rajbhandari, S. (2020). Performance of spatial diversity DCO-OFDM in a weak turbulence underwater visible light communication channel. J. Light. Technol. 38(8): 2271–2277.
  • Jiawei, H., Xiaoqian, L., Xinke, T., Yuhan, D. (2023). Trajectory planning of UUV-assisted UWOC systems based on DQN. Telecommunications Science 39(5).
  • Lu, H.H., Li, C.Y., Tsai, W.S., Chen, Y.X., Fan, W.C., Lin, Y.S., Peng, Y.E., Tang, Y.S. (2023). 5G-based triple-wavelength VLLC-UWLT and laboratory-lighting convergent systems. J. Light. Technol. 41(8): 2351–2360.
  • Mahmoodi, K.A., Uysal, M. (2022). Energy aware trajectory optimization of solar powered AUVs for optical underwater sensor networks. IEEE Transactions on Communications 70(12): 8258–8269. Memon, M.H., Yu, H., Jia, H., Fang, S., Wang, D., Zhang, H., Xiao, S., Kang, Y., Ding, Y., Gong, C., Sun, H. (2023). Quantum dots integrated deep ultraviolet micro-LED array toward solar-blind and visible light dual-band optical communication. IEEE Electron Device Lett. 44(3): 472–475.
  • Oubei, H.M., Zedini, E., ElAfandy, R.T., Kammoun, A., Abdallah, M., Ng, T.K., Hamdi, M., Alouini, M. S., Ooi, B.S. (2017). Simple statistical channel model for weak temperature induced turbulence in underwater wireless optical communication systems. Opt. Lett. 42(13): 2455–2458.
  • Qian, Y., Chen, C., Du, P., Liu, M. (2023). Hybrid space division multiple access and quasi-orthogonal multiple access for multi-user underwater visible light communication. IEEE Photonics Journal 15(4): 1–7.
  • Romeo, M., Da Costa, V., Bardou, F. (2013). Broad distribution effects in sums of lognormal random variables. Eur. Phys. J. 32(4): 513–525.
  • Saeed, N., Celik, A., Al-Naffouri, T.Y., Alouini, M.S. (2019). Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Networks 94: 101935.
  • Safi, H., Sharifi, A.A., Dabiri, M.T., Ansari, I.S., Cheng, J. (2019). Adaptive channel coding and power control for practical FSO communication systems under channel estimation error. IEEE Trans. Vehic. Technol. 68(8): 7566–7577.
  • Salam, R., Srivastava, A., Bohara, V.A., Ashok, A. (2023). An optical intelligent reflecting surface-assisted underwater wireless communication system. IEEE open j. Commun. Soc. 4: 1774–1786.
  • Shi, J., Niu, W., Li, Z., Shen, C., Zhang, J., Yu, S., Chi, N. (2023). Optimal adaptive waveform design utilizing an end-to-end learning-based pre-equalization neural network in an UVLC system. J. Light. Technol. 41(6): 1626–1636.
  • Solomon, C., Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons, New York, NY, USA, 1 edition.
  • Tang, S., Zhang, X., Dong, Y. (2013). Temporal statistics of irradiance in moving turbulent ocean. In MTS/IEEE OCEANS - Bergen, pp. 1–4.
  • Tang, Y., Ding, X., Li, Z., Shao, C., Huang, Z., Liang, S. (2023). Crosstalk-free MIMO VLC using two orthogonal polarizations multiplexed large FoV fluorescent antennas. IEEE Photon. Technol. Lett. 35(23): 1271–1274.
  • Vali, Z., Gholami, A., Ghassemlooy, Z., Omoomi, M., Michelson, D.G., (2018). Experimental study of the turbulence effect on underwater optical wireless communications. Appl. Opt. 57(28): 8314–8319.
  • Wang, K., Song, T., Wang, Y., Fang, C., He, J., Nirmalathas, A., Lim, C., Wong, E., Kandeepan, S. (2023). Evolution of short-range optical wireless communications. J. Light. Technol. 41(4): 1019–1040.
  • Wei, Z., Wei, Z., Fang, J., Pan, J., Wang, L., Dong, Y. (2023). Impulse response modeling and dynamic analysis for SIMO UOWC systems enhanced by RIS equipped UUV. IEEE Trans. Veh. Technol., pp. 1–14.
  • Weng, Y., Guo, Y., Alkhazragi, O., Ng, T.K., Guo, J.H., Ooi, B.S. (2019). Impact of turbulent-flow-induced scintillation on deep-ocean wireless optical communication. J. Light. Technol. 37(19): 5083–5090.
  • Yildiz, S., Baglica, I., Kebapci, B., Elamassie, M., Uysal, M. (2022). Reflector-aided underwater optical channel modeling. Opt. Lett. 47(20): 5321–5324.
  • Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Commun. Surveys Tuts. 19(1): 204–238.
  • Zhu, Z., Lei, L., Lin, T., Li, L., Lin, Z., Jiang, H., Li, G., Wang, W. (2023). Embedded electrode micro-LEDs with high modulation bandwidth for visible light communication. IEEE Trans. Electron Dev. 70(2): 588–593.
There are 41 citations in total.

Details

Primary Language English
Subjects Marine Technology, Marine Electronics, Control and Automation
Journal Section Research Article
Authors

Mohammed Elamassie 0000-0001-9416-3860

Early Pub Date September 23, 2024
Publication Date October 3, 2024
Submission Date July 16, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024 Volume: 10 Issue: Özel Sayı: 1

Cite

APA Elamassie, M. (2024). Performance evaluation of pre-equalized UVLC links over outdated lognormal turbulence channels. Turkish Journal of Maritime and Marine Sciences, 10(Özel Sayı: 1), 19-30. https://doi.org/10.52998/trjmms.1516839

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).