Research Article
BibTex RIS Cite
Year 2022, , 145 - 151, 15.10.2022
https://doi.org/10.23902/trkjnat.1103047

Abstract

Bu çalışmada, flukonazol (FLZ) yüklü poli(laktik-ko-glikolik asit) (PLGA) nanopartikülleri (NP'ler), Candida albicans ATCC 90028'e karşı antibiyofilm aktiviteyi artırmak için polivinil alkol (PVA) ve PVA-rhamnolipid (R)'den oluşan iki farklı formülasyon ile hazırlandı. Bu formülasyonların enkapsülasyon etkinliği, ilaç yükleme kapasitesi, in vitro salınım, karakterizasyonu ve antibiyofilm aktivitesi karşılaştırıldı. NP'lerin karakterizasyonu, taramalı elektron mikroskobu (SEM) ve Zetasizer ile analiz edildi. İlaç yükleme kapasitesi ve enkapsülasyon etkinliği yüzdeleri, spektrofotometrik yöntemle ölçüldü. PLGA-NP'ler, ortalama büyüklükleri ~300 nm, küresel şekilli ve FLZ yüklü PVA ve PVA-R-PLGA-NP'lerin yüzey yükü sırasıyla -25,9±1.99, -48,1±2.46'dır. PVA-R-PLGA-NP'lerde sürekli FLZ salınımı (6 saat sonra >%60) elde edildi. PVA-FLZ-PLGA ve PVA-R-FLZ-PLGA'nın enkapsülasyon etkinliği yüzdeleri sırasıyla %50 ve %85'tir. Antibiyofilm inhibisyon yüzdeleri sırasıyla %55 ve %63'tür. Bu sonuçlar, PVA-R-FLZ-PLGA ilaç taşıma sisteminin C.albicans'ın neden olduğu enfeksiyonlarda kullanılabilecek yeni bir tedavi yaklaşımı olduğunu göstermektedir. 

References

  • 1. Ahmed, R., Tariq, M., Ahmad, I.S., Fouly, H., Fakhar-i-Abbas, Hasan, A. & Kushad, M. 2019. Poly(lactic-co-glycolic acid) Nanoparticles Loaded with Callistemon citrinus Phenolics Exhibited Anticancer Properties against Three Breast Cancer Cell Lines. Journal of Food Quality, e2638481. https://doi.org/10.1155/2019/2638481
  • 2. Alhowyan, A.A., Altamimi, M.A., Kalam, M.A., Khan, A.A., Badran, M., Binkhathlan, Z., Alkholief, M. & Alshamsan, A. 2019. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. Journal of Microbiological Methods, 161: 87-95. https://doi.org/10.1016/j.mimet.2019.01.020
  • 3. de Alteriis, V., Maselli, A., Falanga, S., Galdiero, F.M., Di Lella, R., Gesuele, M., Guida. & E. Galdiero. 2018. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates, Infect Drug Resist. 11: 915-925. https://doi.org/10.2147/IDR.S164262.
  • 4. Cheow, W.S. & Hadinoto, K. 2012. Lipid-polymer hybrid nanoparticles with rhamnolipid-triggered release capabilities as anti-biofilm drug delivery vehicles. Particuology, 10(3): 327-333. https://doi.org/10.1016/j.partic.2011.08.007
  • 5. de Barros, P. P., Rossoni, R. D., de Souza, C. M., Scorzoni, L., Fenley, J. D. C., & Junqueira, J. C. 2020. Candida biofilms: an update on developmental mechanisms and therapeutic challenges. Mycopathologia, 185(3): 415-424.
  • 6. Gómez-Sequeda, N., Torres, R. & Ortiz, C. 2017. Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid). Nanotechnol Science and Applications, 10; 95-104. https://doi.org/10.2147/NSA.S96018
  • 7. Han, C., Romero, N., Fischer, S., Dookran, J., Berger, A. & Doiron, A.L. 2017. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnology Reviews, 6(5): 383-404. https://doi.org/10.1515/ntrev-2016-0054
  • 8. Hazen, K.C. & Howell, S.A. 2003. Candida, Cryptococcus, and other yeasts of medical importance. Manual of Clinical Microbiology, 2: 1693-1711.
  • 9. Kalam, M.A., Alshehri, S., Alshamsan, A., Haque, A. & Shakeel, F. 2017. Solid liquid equilibrium of an antifungal drug itraconazole in different neat solvents: Determination and correlation. Journal of Molecular Liquids, 234: 81--87. https://doi.org/10.1016/j.molliq.2017.03.054
  • 10. Lee, Y., Lee, D., Park, E., Jang, S., Cheon, S.Y., Han, S. & Koo, H. 2021. Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. Journal of Nanobiotechnology 19(1): 411. https://doi.org/10.1186/s12951-021-01160-4
  • 11. Lü, J.-M., Wang, X., Marin-Muller, C., Wang, H., Lin, P.H., Yao, Q. & Chen, C. 2009. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Review of Molecular Diagnostics, 9(4): 325-341. https://doi.org/10.1586/erm.09.15
  • 12. Menon, J.U., Kona, S., Wadajkar, A.S., Desai, F., Vadla, A. & Nguyen, K.T. 2012. Effects of surfactants on the properties of PLGA nanoparticles. Journal of Biomedical Materials Research Part A, 100(8): 1998-2005. https://doi.org/10.1002/jbm.a.34040
  • 13. Müller, R.H. & Jacobs, C. 2002. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. International Journal of Pharmaceutics, 237(1): 151-161. https://doi.org/10.1016/S0378-5173(02)00040-6
  • 14. Nakarani, M., Patel, Priyal, Patel, J., Patel, Pankaj, Murthy, R.S.R. & Vaghani, S.S. 2010. Cyclosporine A-Nanosuspension: Formulation, Characterization and In Vivo Comparison with a Marketed Formulation. Scientia Pharmaceutica, 78(2): 345-362. https://doi.org/10.3797/scipharm.0908-12
  • 15. Patravale, V.B., Date, A.A. & Kulkarni, R.M. 2004. Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy Pharmacology, 56(7): 827-840. https://doi.org/10.1211/0022357023691
  • 16. Pezeshki, A., Ghanbarzadeh, B., Mohammadi, M., Fathollahi, I. & Hamishehkar, H. 2014. Encapsulation of Vitamin A Palmitate in Nanostructured Lipid Carrier (NLC)-Effect of Surfactant Concentration on the Formulation Properties. Advanced Pharmaceutical Bulletin, 4(Suppl2): 563-568. https://doi.org/10.5681/apb.2014.083
  • 17. Sadozai, S.K., Khan, S.A., Karim, N., Becker, D., Steinbrück, N., Gier, S., Baseer, A., Breinig, F., Kickelbick, G. & Schneider, M. 2020. Ketoconazole-loaded PLGA nanoparticles and their synergism against Candida albicans when combined with silver nanoparticles. Journal of Drug Delivery Science and Technology, 56: 101574. https://doi.org/10.1016/j.jddst.2020.101574
  • 18. Shafique, M., Khan, M.A., Khan, W.S., Maqsood-ur-Rehman, Ahmad, W. & Khan, S. 2017. Fabrication, Characterization, and In Vivo Evaluation of Famotidine Loaded Solid Lipid Nanoparticles for Boosting Oral Bioavailability. Journal of Nanomaterials, 2017, e7357150. https://doi.org/10.1155/2017/7357150
  • 19. Sharma, N., Madan, P. & Lin, S. 2016. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences, 11(3): 404-416. https://doi.org/10.1016/j.ajps.2015.09.004
  • 20. Shi, C., Zeng, F. & Fu, D. 2016. Surfactant-free poly(lactide-co-glycolide) nanoparticles for improving in vitro anticancer efficacy of tetrandrine. Journal of Microencapsulation, 33(3): 249-256. https://doi.org/10.3109/02652048.2016.1156175
  • 21. Şengel Türk, C.T., Sezgin Bayındır, Z. & Badıllı, U. 2009. Preparation of polymeric nanoparticles using different stabilizing agents. Ankara Universitesi Eczacılık Fakultesi Dergisi, 38(4): 257-268.
  • 22. Vangijzegem, T., Stanicki, D. & Laurent, S. 2019. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opinion on Drug Delivery, 16(1): 69-78. https://doi.org/10.1080/17425247.2019.1554647
  • 23. Wani, I.A. & Ahmad, T., 2013. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids and Surfaces B: Biointerfaces, 101: 162-170. https://doi.org/10.1016/j.colsurfb.2012.06.005
  • 24. Water, J.J., Smart, S., Franzyk, H., Foged, C. & Nielsen, H.M. 2015. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. European Journal of Pharmaceutics and Biopharmaceutics, 92: 65-73. https://doi.org/10.1016/j.ejpb.2015.02.009
  • 25. Yenice Gürsu, B. 2020. Potential antibiofilm activity of farnesol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. Journal of Analytical Science and Technology, 11(1): 43. https://doi.org/10.1186/s40543-020-00241-7
  • 26. Yi, G., Son, J., Yoo, J., Park, C. & Koo, H. 2019. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 19: 12-21. https://doi.org/10.1016/j.nano.2019.03.015

EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans

Year 2022, , 145 - 151, 15.10.2022
https://doi.org/10.23902/trkjnat.1103047

Abstract

In this study, fluconazole (FLZ) loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were prepared with two different formulations consisting of polyvinyl alcohol (PVA) and PVA-rhamnolipid (R) in order to improve antibiofilm activity against Candida albicans ATCC 90028. The encapsulation efficiency, drug loading capacity, in-vitro release, characterization and antibiofilm activity of these formulations were compared. Characterization of NPs were analyzed by scanning electron microscopy (SEM) and Zetasizer. Drug loading capacity and encapsulation efficiency percentages were measured by spectrophotometric method. PLGA-NPs were spherical in shape with mean sizes of ~300 nm and surface charge of FLZ loaded PVA and PVA-R-PLGA NPs -25,9±1.99, -48,1±2.46, respectively. Sustained release of FLZ (≥60% after 6 h) were obtained in PVA-R PLGA-NPs. The encapsulation efficiency percentages of PVA-FLZ-PLGA and PVA-R-FLZ-PLGA were 50% and 85%, respectively. Antibiofilm inhibition percentages are 55% and 63%, respectively. These results show that the PVA-R-FLZ-PLGA drug delivery system is a new therapeutic approach that can be used in infections caused by C. albicans. 

Thanks

We thank the High Technology Research and Application Center (YUTAM) for providing research facilities to carry out this research work.

References

  • 1. Ahmed, R., Tariq, M., Ahmad, I.S., Fouly, H., Fakhar-i-Abbas, Hasan, A. & Kushad, M. 2019. Poly(lactic-co-glycolic acid) Nanoparticles Loaded with Callistemon citrinus Phenolics Exhibited Anticancer Properties against Three Breast Cancer Cell Lines. Journal of Food Quality, e2638481. https://doi.org/10.1155/2019/2638481
  • 2. Alhowyan, A.A., Altamimi, M.A., Kalam, M.A., Khan, A.A., Badran, M., Binkhathlan, Z., Alkholief, M. & Alshamsan, A. 2019. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. Journal of Microbiological Methods, 161: 87-95. https://doi.org/10.1016/j.mimet.2019.01.020
  • 3. de Alteriis, V., Maselli, A., Falanga, S., Galdiero, F.M., Di Lella, R., Gesuele, M., Guida. & E. Galdiero. 2018. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates, Infect Drug Resist. 11: 915-925. https://doi.org/10.2147/IDR.S164262.
  • 4. Cheow, W.S. & Hadinoto, K. 2012. Lipid-polymer hybrid nanoparticles with rhamnolipid-triggered release capabilities as anti-biofilm drug delivery vehicles. Particuology, 10(3): 327-333. https://doi.org/10.1016/j.partic.2011.08.007
  • 5. de Barros, P. P., Rossoni, R. D., de Souza, C. M., Scorzoni, L., Fenley, J. D. C., & Junqueira, J. C. 2020. Candida biofilms: an update on developmental mechanisms and therapeutic challenges. Mycopathologia, 185(3): 415-424.
  • 6. Gómez-Sequeda, N., Torres, R. & Ortiz, C. 2017. Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid). Nanotechnol Science and Applications, 10; 95-104. https://doi.org/10.2147/NSA.S96018
  • 7. Han, C., Romero, N., Fischer, S., Dookran, J., Berger, A. & Doiron, A.L. 2017. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnology Reviews, 6(5): 383-404. https://doi.org/10.1515/ntrev-2016-0054
  • 8. Hazen, K.C. & Howell, S.A. 2003. Candida, Cryptococcus, and other yeasts of medical importance. Manual of Clinical Microbiology, 2: 1693-1711.
  • 9. Kalam, M.A., Alshehri, S., Alshamsan, A., Haque, A. & Shakeel, F. 2017. Solid liquid equilibrium of an antifungal drug itraconazole in different neat solvents: Determination and correlation. Journal of Molecular Liquids, 234: 81--87. https://doi.org/10.1016/j.molliq.2017.03.054
  • 10. Lee, Y., Lee, D., Park, E., Jang, S., Cheon, S.Y., Han, S. & Koo, H. 2021. Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. Journal of Nanobiotechnology 19(1): 411. https://doi.org/10.1186/s12951-021-01160-4
  • 11. Lü, J.-M., Wang, X., Marin-Muller, C., Wang, H., Lin, P.H., Yao, Q. & Chen, C. 2009. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Review of Molecular Diagnostics, 9(4): 325-341. https://doi.org/10.1586/erm.09.15
  • 12. Menon, J.U., Kona, S., Wadajkar, A.S., Desai, F., Vadla, A. & Nguyen, K.T. 2012. Effects of surfactants on the properties of PLGA nanoparticles. Journal of Biomedical Materials Research Part A, 100(8): 1998-2005. https://doi.org/10.1002/jbm.a.34040
  • 13. Müller, R.H. & Jacobs, C. 2002. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. International Journal of Pharmaceutics, 237(1): 151-161. https://doi.org/10.1016/S0378-5173(02)00040-6
  • 14. Nakarani, M., Patel, Priyal, Patel, J., Patel, Pankaj, Murthy, R.S.R. & Vaghani, S.S. 2010. Cyclosporine A-Nanosuspension: Formulation, Characterization and In Vivo Comparison with a Marketed Formulation. Scientia Pharmaceutica, 78(2): 345-362. https://doi.org/10.3797/scipharm.0908-12
  • 15. Patravale, V.B., Date, A.A. & Kulkarni, R.M. 2004. Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy Pharmacology, 56(7): 827-840. https://doi.org/10.1211/0022357023691
  • 16. Pezeshki, A., Ghanbarzadeh, B., Mohammadi, M., Fathollahi, I. & Hamishehkar, H. 2014. Encapsulation of Vitamin A Palmitate in Nanostructured Lipid Carrier (NLC)-Effect of Surfactant Concentration on the Formulation Properties. Advanced Pharmaceutical Bulletin, 4(Suppl2): 563-568. https://doi.org/10.5681/apb.2014.083
  • 17. Sadozai, S.K., Khan, S.A., Karim, N., Becker, D., Steinbrück, N., Gier, S., Baseer, A., Breinig, F., Kickelbick, G. & Schneider, M. 2020. Ketoconazole-loaded PLGA nanoparticles and their synergism against Candida albicans when combined with silver nanoparticles. Journal of Drug Delivery Science and Technology, 56: 101574. https://doi.org/10.1016/j.jddst.2020.101574
  • 18. Shafique, M., Khan, M.A., Khan, W.S., Maqsood-ur-Rehman, Ahmad, W. & Khan, S. 2017. Fabrication, Characterization, and In Vivo Evaluation of Famotidine Loaded Solid Lipid Nanoparticles for Boosting Oral Bioavailability. Journal of Nanomaterials, 2017, e7357150. https://doi.org/10.1155/2017/7357150
  • 19. Sharma, N., Madan, P. & Lin, S. 2016. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences, 11(3): 404-416. https://doi.org/10.1016/j.ajps.2015.09.004
  • 20. Shi, C., Zeng, F. & Fu, D. 2016. Surfactant-free poly(lactide-co-glycolide) nanoparticles for improving in vitro anticancer efficacy of tetrandrine. Journal of Microencapsulation, 33(3): 249-256. https://doi.org/10.3109/02652048.2016.1156175
  • 21. Şengel Türk, C.T., Sezgin Bayındır, Z. & Badıllı, U. 2009. Preparation of polymeric nanoparticles using different stabilizing agents. Ankara Universitesi Eczacılık Fakultesi Dergisi, 38(4): 257-268.
  • 22. Vangijzegem, T., Stanicki, D. & Laurent, S. 2019. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opinion on Drug Delivery, 16(1): 69-78. https://doi.org/10.1080/17425247.2019.1554647
  • 23. Wani, I.A. & Ahmad, T., 2013. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids and Surfaces B: Biointerfaces, 101: 162-170. https://doi.org/10.1016/j.colsurfb.2012.06.005
  • 24. Water, J.J., Smart, S., Franzyk, H., Foged, C. & Nielsen, H.M. 2015. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. European Journal of Pharmaceutics and Biopharmaceutics, 92: 65-73. https://doi.org/10.1016/j.ejpb.2015.02.009
  • 25. Yenice Gürsu, B. 2020. Potential antibiofilm activity of farnesol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. Journal of Analytical Science and Technology, 11(1): 43. https://doi.org/10.1186/s40543-020-00241-7
  • 26. Yi, G., Son, J., Yoo, J., Park, C. & Koo, H. 2019. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 19: 12-21. https://doi.org/10.1016/j.nano.2019.03.015
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Article/Araştırma Makalesi
Authors

Ayşe Üstün 0000-0002-4723-052X

Serkan Örtucu 0000-0002-3180-0444

Publication Date October 15, 2022
Submission Date April 13, 2022
Acceptance Date July 1, 2022
Published in Issue Year 2022

Cite

APA Üstün, A., & Örtucu, S. (2022). EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans. Trakya University Journal of Natural Sciences, 23(2), 145-151. https://doi.org/10.23902/trkjnat.1103047
AMA Üstün A, Örtucu S. EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans. Trakya Univ J Nat Sci. October 2022;23(2):145-151. doi:10.23902/trkjnat.1103047
Chicago Üstün, Ayşe, and Serkan Örtucu. “EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida Albicans”. Trakya University Journal of Natural Sciences 23, no. 2 (October 2022): 145-51. https://doi.org/10.23902/trkjnat.1103047.
EndNote Üstün A, Örtucu S (October 1, 2022) EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans. Trakya University Journal of Natural Sciences 23 2 145–151.
IEEE A. Üstün and S. Örtucu, “EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans”, Trakya Univ J Nat Sci, vol. 23, no. 2, pp. 145–151, 2022, doi: 10.23902/trkjnat.1103047.
ISNAD Üstün, Ayşe - Örtucu, Serkan. “EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida Albicans”. Trakya University Journal of Natural Sciences 23/2 (October 2022), 145-151. https://doi.org/10.23902/trkjnat.1103047.
JAMA Üstün A, Örtucu S. EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans. Trakya Univ J Nat Sci. 2022;23:145–151.
MLA Üstün, Ayşe and Serkan Örtucu. “EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida Albicans”. Trakya University Journal of Natural Sciences, vol. 23, no. 2, 2022, pp. 145-51, doi:10.23902/trkjnat.1103047.
Vancouver Üstün A, Örtucu S. EVALUATION OF THE ANTIBIOFILM EFFECT OF FLUCONAZOLE LOADED PLGA NANOPARTICLES PREPARED USING RHAMNOLIPID ON Candida albicans. Trakya Univ J Nat Sci. 2022;23(2):145-51.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.