Research Article
BibTex RIS Cite

CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER

Year 2022, , 177 - 184, 15.10.2022
https://doi.org/10.23902/trkjnat.1139062

Abstract

The aim of this study is to characterize tumor cell specific expression of purinergic ecto-enzymes CD39 and CD73, and to associate prognostic significance of these expression patterns in colorectal cancer (CRC) patients. Protein and gene expression of the target genes in various CRC cell lines were assessed via Western Blot (WB) analysis and Real Time PCR (RT-PCR). Additionally, tumor vs stromal cell expression of the target genes was analyzed from publicly available patient expression datasets. Finally, the correlation between CD39 and CD73 expression with patient prognosis was analyzed via The Cancer Genome Atlas (TCGA) datasets. In CRC cell lines, CD39 was found to be not expressed at all while CD73 was expressed extensively in most cell lines via WB and RT-PCR analyses. Patient microarray expression data confirmed the results from CRC cell lines that CD39 expression was very low in epithelial/tumor cells relative to other stromal cell types yet CD73 was expressed abundantly in every cell type within patient tumor samples. Interestingly, CD39 expression in patient tumors was correlated with favorable prognosis while CD73 expression was associated with worse prognosis. Although CD39 and CD73 are related enzymes involved in extracellular purinergic signaling, their expression patterns in tumor cells and prognostic effects in patients show opposing outcomes. Therefore, better insights in understanding the functional involvement of purinergic ecto-enzymes in colorectal tumor development is needed via further mechanistic studies. 

Supporting Institution

TÜBİTAK

Project Number

118S399

Thanks

I thank to Dr. Seçil Demirkol Canlı (Hacettepe University, Ankara) for assistance in bioinformatic analysis of human tumor samples for CD39 and CD73 expression; Prof. Sreeparna Banerjee (METU, Ankara) for providing Caco-2 cells; Prof. İhsan Gürsel (iBG, İzmir) for providing unstimulated Jurkat and Namalwa cell lysates or mRNA; Prof. Florian Greten (GSH and FCI, Frankfurt) for providing HT-29 cells; and Dr. Tieu Lan Chau (Bilkent University, Ankara) for technical assistance for in vitro gene expression analyses.

References

  • 1. Antonioli, L., Pacher, P., Vizi, E.S. & Haskó, G. 2013. Cd39 and CD73 in immunity and inflammation. Trends in Molecular Medicine, 19(6): 355-367.
  • 2. Antonioli, L., Yegutkin, G.G., Pacher, P., Blandizzi, C. & Haskó, G. 2016. Anti-CD73 in cancer immunotherapy: Awakening new opportunities. Trends in Cancer, 2(2): 95-109.
  • 3. Bastid, J., Regairaz, A., Bonnefoy, N., Déjou, C., Giustiniani, J., Laheurte, C., Cochaud, S., Laprevotte, E., Funck-Brentano, E., Hemon, P., Gros, L., Bec, N., Larroque, C., Alberici, G., Bensussan, A. & Eliaou, J.‑F. 2015. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer İmmunology Research, 3(3): 254-265.
  • 4. Bollrath, J., Phesse, T.J., Burstin, V.A. von, Putoczki, T., Bennecke, M., Bateman, T., Nebelsiek, T., Lundgren-May, T., Canli, O., Schwitalla, S., Matthews, V., Schmid, R.M., Kirchner, T., Arkan, M.C., Ernst, M. & Greten, F.R. 2009. Gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15(2): 91-102.
  • 5. Cekic, C. & Linden, J. 2014. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Research, 74(24): 7239-7249.
  • 6. Cekic, C. & Linden, J. 2016. Purinergic regulation of the immune system. Nature Reviews Immunology, 16(3): 177-192.
  • 7. Choi, H.R., Oh, H.K., Park, S.H. & Jeong, Y.‑J. 2020. Expression of CD73 is associated with tumor progression and intratumoral inflammation in breast cancer. Asia-Pacific Journal of Clinical Oncology. 18(1): 35-43
  • 8. Demirkol, S., Gomceli, I., Isbilen, M., Dayanc, B.E., Tez, M., Bostanci, E.B., Turhan, N., Akoglu, M., Ozyerli, E., Durdu, S., Konu, O., Nissan, A., Gonen, M. & Gure, A. O. 2017. A Combined ULBP2 and SEMA5A Expression Signature as a Prognostic and Predictive Biomarker for Colon Cancer. Journal of Cancer, 8(7): 1113-1122.
  • 9. Feng, L., Sun, X., Csizmadia, E., Han, L., Bian, S., Murakami, T., Wang, X., Robson, S. C. & Wu, Y. 2011. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia (New York, N.Y.), 13(3): 206-216.
  • 10. Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng, W., Kim, D., Nair, V.S., Xu, Y., Khuong, A., Hoang, C.D., Diehn, M., West, R.B., Plevritis, S.K. & Alizadeh, A. A. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine, 21(8): 938-945.
  • 11. Ghosh, S. & Hayden, M. S. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology, 8(11): 837-848.
  • 12. Gong, C., Wang, J., Cheng, Q., Ren, W. & Bai, J. 2020. Mesenchymal stromal cells in adipose tissue of breast cancer patients: A cross-sectional study. Cellular and Molecular Biology (Noisy-Le-Grand, France), 66(2): 71-73.
  • 13. Göktuna, S. I., Canli, O., Bollrath, J., Fingerle, A. A., Horst, D., Diamanti, M. A., Pallangyo, C., Bennecke, M., Nebelsiek, T., Mankan, A. K., Lang, R., Artis, D., Hu, Y., Patzelt, T., Ruland, J., Kirchner, T., Taketo, M. M., Chariot, A., Arkan, M. C. & Greten, F. R. 2014. Ikkα promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells. Cell Reports, 7(6): 1914-1925.
  • 14. Göktuna, S. I. 2022. Ikbke-driven TPL2 and MEK1 phosphorylations sustain constitutive ERK1/2 activation in tumor cells. EXCLI Journal, 21, 436-453.
  • 15. Göktuna, S. I, Shostak, K., Chau, T.‑L., Heukamp, L. C., Hennuy, B., Duong, H.‑Q., Ladang, A., Close, P., Klevernic, I., Olivier, F., Florin, A., Ehx, G., Baron, F., Vandereyken, M., Rahmouni, S., Vereecke, L., van Loo, G., Büttner, R., Greten, F. R. & Chariot, A. 2016. The Prosurvival IKK-Related Kinase IKKε Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine. Cancer Research, 76(9): 2587-2599.
  • 16. Grivennikov, S. I., Greten, F. R. & Karin, M. 2010. Immunity, inflammation, and cancer. Cell, 140(6): 883-899.
  • 17. Hajizadeh, F., Masjedi, A., Heydarzedeh Asl, S., Karoon Kiani, F., Peydaveisi, M., Ghalamfarsa, G., Jadidi-Niaragh, F. & Sevbitov, A. 2020. Adenosine and adenosine receptors in colorectal cancer. International Immunopharmacology, 87, 106853.
  • 18. Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092): 431-436.
  • 19. Liu, N., Fang, X.‑D. & Vadis, Q. 2012. Cd73 as a novel prognostic biomarker for human colorectal cancer. Journal of Surgical Oncology, 106(7): 918-920.
  • 20. Liu, S., Di Li, Liu, J., Wang, H., Horecny, I., Shen, R., Zhang, R., Wu, H., Hu, Q., Zhao, P., Zhang, F., Yan, Y., Feng, J., Zhuang, L., Li, J., Zhang, L. & Tao, W. 2021. A Novel CD73 Inhibitor SHR170008 Suppresses Adenosine in Tumor and Enhances Anti-Tumor Activity with PD-1 Blockade in a Mouse Model of Breast Cancer. OncoTargets and Therapy, 14, 4561-4574.
  • 21. Liu, X.‑H., Wu, X.‑R., Lan, N., Zheng, X.‑B., Zhou, C., Hu, T., Chen, Y.‑F., Cai, Z.‑R., Chen, Z.‑X., Lan, P. & Wu, X.‑J. 2020. Cd73 promotes colitis-associated tumorigenesis in mice. Oncology Letters, 20(2): 1221-1230.
  • 22. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. 2008. Cancer-related inflammation. Nature, 454(7203): 436-444.
  • 23. Matsuyama, M., Wakui, M., Monnai, M., Mizushima, T., Nishime, C., Kawai, K., Ohmura, M., Suemizu, H., Hishiki, T., Suematsu, M., Murata, M., Chijiwa, T., Furukawa, D., Ogoshi, K., Makuuchi, H. & Nakamura, M. 2010. Reduced CD73 expression and its association with altered purine nucleotide metabolism in colorectal cancer cells robustly causing liver metastases. Oncology Letters, 1(3): 431-436.
  • 24. Messaoudi, N., Cousineau, I., Arslanian, E., Henault, D., Stephen, D., Vandenbroucke-Menu, F., Dagenais, M., Létourneau, R., Plasse, M., Roy, A., Lapointe, R., Ysebaert, D., Trudel, D., Soucy, G., Stagg, J. & Turcotte, S. 2020. Prognostic value of CD73 expression in resected colorectal cancer liver metastasis. Oncoimmunology, 9(1): 1746138.
  • 25. Parcesepe, P., Giordano, G., Laudanna, C., Febbraro, A. & Pancione, M. 2016. Cancer-Associated Immune Resistance and Evasion of Immune Surveillance in Colorectal Cancer. Gastroenterology Research and Practice, 2016, 6261721.
  • 26. Petruk, N., Tuominen, S., Åkerfelt, M., Mattsson, J., Sandholm, J., Nees, M., Yegutkin, G.G., Jukkola, A., Tuomela, J. & Selander, K.S. 2021. Cd73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Scientific Reports, 11(1): 6035.
  • 27. Ploeg, E.M., Ke, X., Britsch, I., Hendriks, M.A.J.M., van der Zant, F.A., Kruijff, S., Samplonius, D.F., Zhang, H. & Helfrich, W. 2021. Bispecific antibody CD73xEpCAM selectively inhibits the adenosine-mediated immunosuppressive activity of carcinoma-derived extracellular vesicles. Cancer Letters, 521, 109-118.
  • 28. Rhodes, J.M. & Campbell, B.J. 2002. Inflammation and colorectal cancer: Ibd-associated and sporadic cancer compared. Trends in Molecular Medicine, 8(1): 10-16.
  • 29. Rosa, M. de Pace, U., Rega, D., Costabile, V., Duraturo, F., Izzo, P. & Delrio, P. 2015. Genetics, diagnosis and management of colorectal cancer (Review). Oncology Reports, 34(3): 1087-1096.
  • 30. Roufas, C., Georgakopoulos-Soares, I. & Zaravinos, A. 2021. Molecular correlates of immune cytolytic subgroups in colorectal cancer by integrated genomics analysis. NAR Cancer, 3(1): zcab005.
  • 31. Smith, J.J., Deane, N.G., Wu, F., Merchant, N.B., Zhang, B., Jiang, A., Lu, P., Johnson, J.C., Schmidt, C., Bailey, C.E., Eschrich, S., Kis, C., Levy, S., Washington, M.K., Heslin, M.J., Coffey, R.J., Yeatman, T.J., Shyr, Y. & Beauchamp, R.D. 2010. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology, 138(3): 958-968.
  • 32. Soleimani, A., Taghizadeh, E., Shahsavari, S., Amini, Y., Rashidpour, H., Azadian, E., Jafari, A., Parizadeh, M.R., Mashayekhi, K., Soukhtanloo, M. & Jaafari, M.R. 2019. Cd73; a key ectonucleotidase in the development of breast cancer: Recent advances and perspectives. Journal of Cellular Physiology. 234, 14622-14632.
  • 33. Stagg, J., Beavis, P.A., Divisekera, U., Liu, M.C.P., Möller, A., Darcy, P.K. & Smyth, M.J. 2012. Cd73-deficient mice are resistant to carcinogenesis. Cancer Research, 72(9): 2190-2196.
  • 34. Stagg, J., Divisekera, U., Duret, H., Sparwasser, T., Teng, M.W.L., Darcy, P.K. & Smyth, M.J. 2011. Cd73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Research, 71(8): 2892-2900.
  • 35. Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., Dwyer, K.M. & Smyth, M.J. 2010. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences, 107(4): 1547-1552.
  • 36. Stanford University. PRECOG - PREdiction of Clinical Outcomes from Genomic Profiles. https://precog.stanford.edu/ (Date accessed: 15 April 2022)
  • 37. Storey, J.D. & Tibshirani, R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16): 9440-9445.
  • 38. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3): 209-249.
  • 39. Sveen, A., Agesen, T.H., Nesbakken, A., Rognum, T.O., Lothe, R.A. & Skotheim, R.I. 2011. Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Medicine, 3(5): 32.
  • 40. Terzić, J., Grivennikov, S., Karin, E. & Karin, M. 2010. Inflammation and colon cancer. Gastroenterology, 138(6): 2101-2114.e5.
  • 41. Tokunaga, R., Cao, S., Naseem, M., Lo, J.H., Battaglin, F., Puccini, A., Berger, M.D., Soni, S., Millstein, J., Zhang, W., Stintzing, S., Loupakis, F., Cremolini, C., Heinemann, V., Falcone, A. & Lenz, H.‑J. 2019. Prognostic Effect of Adenosine-related Genetic Variants in Metastatic Colorectal Cancer Treated with Bevacizumab-based Chemotherapy. Clinical Colorectal Cancer, 18(1): e8-e19.
  • 42. Vasiukov, G., Novitskaya, T., Zijlstra, A., Owens, P., Ye, F., Zhao, Z., Moses, H.L., Blackwell, T., Feoktistov, I. & Novitskiy, S.V. 2020. Myeloid Cell-Derived TGFβ Signaling Regulates ECM Deposition in Mammary Carcinoma via Adenosine-Dependent Mechanisms. Cancer Research, 80(12): 2628-2638.
  • 43. Wang, L., Zhou, X., Zhou, T., Ma, D., Chen, S., Zhi, X., Yin, L., Shao, Z., Ou, Z. & Zhou, P. 2008. Ecto-5'-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. Journal of Cancer Research and Clinical Oncology, 134(3): 365-372.
  • 44. Wu, R., Chen, Y., Li, F., Li, W., Zhou, H., Yang, Y. & Pei, Z. 2016. Effects of CD73 on human colorectal cancer cell growth in vivo and in vitro. Oncology Reports, 35(3): 1750-1756.
  • 45. Wu, X.‑R., He, X.‑S., Chen, Y.‑F., Yuan, R.‑X., Zeng, Y., Lian, L., Zou, Y.‑F., Lan, N., Wu, X.‑J. & Lan, P. 2012. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. Journal of Surgical Oncology, 106(2): 130-137.
  • 46. Xie, M., Qin, H., Luo, Q., Huang, Q., He, X., Yang, Z., Lan, P. & Lian, L. 2017. Microrna-30a regulates cell proliferation and tumor growth of colorectal cancer by targeting CD73. BMC Cancer, 17(1): 305.
  • 47. Yu, M., Guo, G., Huang, L., Deng, L., Chang, C.‑S., Achyut, B.R., Canning, M., Xu, N., Arbab, A.S., Bollag, R.J., Rodriguez, P.C., Mellor, A.L., Shi, H., Munn, D.H. & Cui, Y. 2020. Cd73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nature Communications, 11(1): 515.
  • 48. Zhi, X., Chen, S., Zhou, P., Shao, Z., Wang, L., Ou, Z. & Yin, L. 2007. Rna interference of ecto-5'-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clinical & Experimental Metastasis, 24(6): 439-448.
  • 49. Zhou, P., Zhi, X., Zhou, T., Chen, S., Li, X., Wang, L., Yin, L., Shao, Z. & Ou, Z. 2007. Overexpression of Ecto-5'-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biology & Therapy, 6(3): 426-431.
Year 2022, , 177 - 184, 15.10.2022
https://doi.org/10.23902/trkjnat.1139062

Abstract

Bu çalışmanın amacı pürinerjik ekto-enzimler CD39 ve CD73'ün tümör hücresine özgü ifadesini karakterize etmek ve kolorektal kanser (KRK) hastalarında bu ifade örgülerinin prognostik öneminin anlaşılmasıdır. Çeşitli KRK hücre hatlarında hedef genlerin protein ve gen ifadesi, Western Blot (WB) ve Real Time PCR(RT-PCR) yoluyla değerlendirildi. Bunun yanında hedef genlerin tümör ve stromal hücrelerdeki ifadesi kamuya açık hasta ifade veri setleri vasıtasıyla analiz edildi. Son olarak, CD39 ve CD73 ifadesi ile hasta prognozu arasındaki ilişki The Cancer Genome Atlas (TCGA) veri setleri aracılığıyla analiz edildi. KRK hücre hatlarında CD39'un hiç ifade edilmediği, CD73'ün ise çoğu hücre hattında yoğun şekilde ifade edildiği WB ve RT-PCR analizleri yoluyla bulundu. Hasta mikrodizin ifade verileri, CD39 ifadesinin epitelyal/tümör hücrelerinde diğer stromal hücre tiplerine göre çok düşük olduğunu, ancak CD73'ün hasta tümör örneklerindeki her hücre tipinde bol miktarda ifade edildiğini KRK hücre hatlarından elde edilen sonuçları doğrular biçimde ortaya konuldu. İlginç bir şekilde, hasta tümörlerinde CD39 ifadesi iyi prognoz ile ilişkili olarak bulunurken CD73 ifadesi ise kötü prognoz ile ilişkili olarak gözlenmiştir. CD39 ve CD73 hücre dışı pürinerjik sinyal yolağında yer alan ilgili enzimler olmalarına rağmen tümör hücrelerindeki ifade örgüleri ve hasta prognozlarındaki etkilerinde birbirine zıt sonuçlara ulaşılmıştır. Sonuç olarak kolorektal tümör gelişiminde pürinerjik ekto-enzimlerin fonksiyonel katılımını daha iyi anlamak için daha ileri mekanistik çalışmalara ihtiyaç vardır.

Project Number

118S399

References

  • 1. Antonioli, L., Pacher, P., Vizi, E.S. & Haskó, G. 2013. Cd39 and CD73 in immunity and inflammation. Trends in Molecular Medicine, 19(6): 355-367.
  • 2. Antonioli, L., Yegutkin, G.G., Pacher, P., Blandizzi, C. & Haskó, G. 2016. Anti-CD73 in cancer immunotherapy: Awakening new opportunities. Trends in Cancer, 2(2): 95-109.
  • 3. Bastid, J., Regairaz, A., Bonnefoy, N., Déjou, C., Giustiniani, J., Laheurte, C., Cochaud, S., Laprevotte, E., Funck-Brentano, E., Hemon, P., Gros, L., Bec, N., Larroque, C., Alberici, G., Bensussan, A. & Eliaou, J.‑F. 2015. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer İmmunology Research, 3(3): 254-265.
  • 4. Bollrath, J., Phesse, T.J., Burstin, V.A. von, Putoczki, T., Bennecke, M., Bateman, T., Nebelsiek, T., Lundgren-May, T., Canli, O., Schwitalla, S., Matthews, V., Schmid, R.M., Kirchner, T., Arkan, M.C., Ernst, M. & Greten, F.R. 2009. Gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15(2): 91-102.
  • 5. Cekic, C. & Linden, J. 2014. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Research, 74(24): 7239-7249.
  • 6. Cekic, C. & Linden, J. 2016. Purinergic regulation of the immune system. Nature Reviews Immunology, 16(3): 177-192.
  • 7. Choi, H.R., Oh, H.K., Park, S.H. & Jeong, Y.‑J. 2020. Expression of CD73 is associated with tumor progression and intratumoral inflammation in breast cancer. Asia-Pacific Journal of Clinical Oncology. 18(1): 35-43
  • 8. Demirkol, S., Gomceli, I., Isbilen, M., Dayanc, B.E., Tez, M., Bostanci, E.B., Turhan, N., Akoglu, M., Ozyerli, E., Durdu, S., Konu, O., Nissan, A., Gonen, M. & Gure, A. O. 2017. A Combined ULBP2 and SEMA5A Expression Signature as a Prognostic and Predictive Biomarker for Colon Cancer. Journal of Cancer, 8(7): 1113-1122.
  • 9. Feng, L., Sun, X., Csizmadia, E., Han, L., Bian, S., Murakami, T., Wang, X., Robson, S. C. & Wu, Y. 2011. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia (New York, N.Y.), 13(3): 206-216.
  • 10. Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng, W., Kim, D., Nair, V.S., Xu, Y., Khuong, A., Hoang, C.D., Diehn, M., West, R.B., Plevritis, S.K. & Alizadeh, A. A. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine, 21(8): 938-945.
  • 11. Ghosh, S. & Hayden, M. S. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology, 8(11): 837-848.
  • 12. Gong, C., Wang, J., Cheng, Q., Ren, W. & Bai, J. 2020. Mesenchymal stromal cells in adipose tissue of breast cancer patients: A cross-sectional study. Cellular and Molecular Biology (Noisy-Le-Grand, France), 66(2): 71-73.
  • 13. Göktuna, S. I., Canli, O., Bollrath, J., Fingerle, A. A., Horst, D., Diamanti, M. A., Pallangyo, C., Bennecke, M., Nebelsiek, T., Mankan, A. K., Lang, R., Artis, D., Hu, Y., Patzelt, T., Ruland, J., Kirchner, T., Taketo, M. M., Chariot, A., Arkan, M. C. & Greten, F. R. 2014. Ikkα promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells. Cell Reports, 7(6): 1914-1925.
  • 14. Göktuna, S. I. 2022. Ikbke-driven TPL2 and MEK1 phosphorylations sustain constitutive ERK1/2 activation in tumor cells. EXCLI Journal, 21, 436-453.
  • 15. Göktuna, S. I, Shostak, K., Chau, T.‑L., Heukamp, L. C., Hennuy, B., Duong, H.‑Q., Ladang, A., Close, P., Klevernic, I., Olivier, F., Florin, A., Ehx, G., Baron, F., Vandereyken, M., Rahmouni, S., Vereecke, L., van Loo, G., Büttner, R., Greten, F. R. & Chariot, A. 2016. The Prosurvival IKK-Related Kinase IKKε Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine. Cancer Research, 76(9): 2587-2599.
  • 16. Grivennikov, S. I., Greten, F. R. & Karin, M. 2010. Immunity, inflammation, and cancer. Cell, 140(6): 883-899.
  • 17. Hajizadeh, F., Masjedi, A., Heydarzedeh Asl, S., Karoon Kiani, F., Peydaveisi, M., Ghalamfarsa, G., Jadidi-Niaragh, F. & Sevbitov, A. 2020. Adenosine and adenosine receptors in colorectal cancer. International Immunopharmacology, 87, 106853.
  • 18. Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092): 431-436.
  • 19. Liu, N., Fang, X.‑D. & Vadis, Q. 2012. Cd73 as a novel prognostic biomarker for human colorectal cancer. Journal of Surgical Oncology, 106(7): 918-920.
  • 20. Liu, S., Di Li, Liu, J., Wang, H., Horecny, I., Shen, R., Zhang, R., Wu, H., Hu, Q., Zhao, P., Zhang, F., Yan, Y., Feng, J., Zhuang, L., Li, J., Zhang, L. & Tao, W. 2021. A Novel CD73 Inhibitor SHR170008 Suppresses Adenosine in Tumor and Enhances Anti-Tumor Activity with PD-1 Blockade in a Mouse Model of Breast Cancer. OncoTargets and Therapy, 14, 4561-4574.
  • 21. Liu, X.‑H., Wu, X.‑R., Lan, N., Zheng, X.‑B., Zhou, C., Hu, T., Chen, Y.‑F., Cai, Z.‑R., Chen, Z.‑X., Lan, P. & Wu, X.‑J. 2020. Cd73 promotes colitis-associated tumorigenesis in mice. Oncology Letters, 20(2): 1221-1230.
  • 22. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. 2008. Cancer-related inflammation. Nature, 454(7203): 436-444.
  • 23. Matsuyama, M., Wakui, M., Monnai, M., Mizushima, T., Nishime, C., Kawai, K., Ohmura, M., Suemizu, H., Hishiki, T., Suematsu, M., Murata, M., Chijiwa, T., Furukawa, D., Ogoshi, K., Makuuchi, H. & Nakamura, M. 2010. Reduced CD73 expression and its association with altered purine nucleotide metabolism in colorectal cancer cells robustly causing liver metastases. Oncology Letters, 1(3): 431-436.
  • 24. Messaoudi, N., Cousineau, I., Arslanian, E., Henault, D., Stephen, D., Vandenbroucke-Menu, F., Dagenais, M., Létourneau, R., Plasse, M., Roy, A., Lapointe, R., Ysebaert, D., Trudel, D., Soucy, G., Stagg, J. & Turcotte, S. 2020. Prognostic value of CD73 expression in resected colorectal cancer liver metastasis. Oncoimmunology, 9(1): 1746138.
  • 25. Parcesepe, P., Giordano, G., Laudanna, C., Febbraro, A. & Pancione, M. 2016. Cancer-Associated Immune Resistance and Evasion of Immune Surveillance in Colorectal Cancer. Gastroenterology Research and Practice, 2016, 6261721.
  • 26. Petruk, N., Tuominen, S., Åkerfelt, M., Mattsson, J., Sandholm, J., Nees, M., Yegutkin, G.G., Jukkola, A., Tuomela, J. & Selander, K.S. 2021. Cd73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Scientific Reports, 11(1): 6035.
  • 27. Ploeg, E.M., Ke, X., Britsch, I., Hendriks, M.A.J.M., van der Zant, F.A., Kruijff, S., Samplonius, D.F., Zhang, H. & Helfrich, W. 2021. Bispecific antibody CD73xEpCAM selectively inhibits the adenosine-mediated immunosuppressive activity of carcinoma-derived extracellular vesicles. Cancer Letters, 521, 109-118.
  • 28. Rhodes, J.M. & Campbell, B.J. 2002. Inflammation and colorectal cancer: Ibd-associated and sporadic cancer compared. Trends in Molecular Medicine, 8(1): 10-16.
  • 29. Rosa, M. de Pace, U., Rega, D., Costabile, V., Duraturo, F., Izzo, P. & Delrio, P. 2015. Genetics, diagnosis and management of colorectal cancer (Review). Oncology Reports, 34(3): 1087-1096.
  • 30. Roufas, C., Georgakopoulos-Soares, I. & Zaravinos, A. 2021. Molecular correlates of immune cytolytic subgroups in colorectal cancer by integrated genomics analysis. NAR Cancer, 3(1): zcab005.
  • 31. Smith, J.J., Deane, N.G., Wu, F., Merchant, N.B., Zhang, B., Jiang, A., Lu, P., Johnson, J.C., Schmidt, C., Bailey, C.E., Eschrich, S., Kis, C., Levy, S., Washington, M.K., Heslin, M.J., Coffey, R.J., Yeatman, T.J., Shyr, Y. & Beauchamp, R.D. 2010. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology, 138(3): 958-968.
  • 32. Soleimani, A., Taghizadeh, E., Shahsavari, S., Amini, Y., Rashidpour, H., Azadian, E., Jafari, A., Parizadeh, M.R., Mashayekhi, K., Soukhtanloo, M. & Jaafari, M.R. 2019. Cd73; a key ectonucleotidase in the development of breast cancer: Recent advances and perspectives. Journal of Cellular Physiology. 234, 14622-14632.
  • 33. Stagg, J., Beavis, P.A., Divisekera, U., Liu, M.C.P., Möller, A., Darcy, P.K. & Smyth, M.J. 2012. Cd73-deficient mice are resistant to carcinogenesis. Cancer Research, 72(9): 2190-2196.
  • 34. Stagg, J., Divisekera, U., Duret, H., Sparwasser, T., Teng, M.W.L., Darcy, P.K. & Smyth, M.J. 2011. Cd73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Research, 71(8): 2892-2900.
  • 35. Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., Dwyer, K.M. & Smyth, M.J. 2010. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences, 107(4): 1547-1552.
  • 36. Stanford University. PRECOG - PREdiction of Clinical Outcomes from Genomic Profiles. https://precog.stanford.edu/ (Date accessed: 15 April 2022)
  • 37. Storey, J.D. & Tibshirani, R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16): 9440-9445.
  • 38. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3): 209-249.
  • 39. Sveen, A., Agesen, T.H., Nesbakken, A., Rognum, T.O., Lothe, R.A. & Skotheim, R.I. 2011. Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Medicine, 3(5): 32.
  • 40. Terzić, J., Grivennikov, S., Karin, E. & Karin, M. 2010. Inflammation and colon cancer. Gastroenterology, 138(6): 2101-2114.e5.
  • 41. Tokunaga, R., Cao, S., Naseem, M., Lo, J.H., Battaglin, F., Puccini, A., Berger, M.D., Soni, S., Millstein, J., Zhang, W., Stintzing, S., Loupakis, F., Cremolini, C., Heinemann, V., Falcone, A. & Lenz, H.‑J. 2019. Prognostic Effect of Adenosine-related Genetic Variants in Metastatic Colorectal Cancer Treated with Bevacizumab-based Chemotherapy. Clinical Colorectal Cancer, 18(1): e8-e19.
  • 42. Vasiukov, G., Novitskaya, T., Zijlstra, A., Owens, P., Ye, F., Zhao, Z., Moses, H.L., Blackwell, T., Feoktistov, I. & Novitskiy, S.V. 2020. Myeloid Cell-Derived TGFβ Signaling Regulates ECM Deposition in Mammary Carcinoma via Adenosine-Dependent Mechanisms. Cancer Research, 80(12): 2628-2638.
  • 43. Wang, L., Zhou, X., Zhou, T., Ma, D., Chen, S., Zhi, X., Yin, L., Shao, Z., Ou, Z. & Zhou, P. 2008. Ecto-5'-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. Journal of Cancer Research and Clinical Oncology, 134(3): 365-372.
  • 44. Wu, R., Chen, Y., Li, F., Li, W., Zhou, H., Yang, Y. & Pei, Z. 2016. Effects of CD73 on human colorectal cancer cell growth in vivo and in vitro. Oncology Reports, 35(3): 1750-1756.
  • 45. Wu, X.‑R., He, X.‑S., Chen, Y.‑F., Yuan, R.‑X., Zeng, Y., Lian, L., Zou, Y.‑F., Lan, N., Wu, X.‑J. & Lan, P. 2012. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. Journal of Surgical Oncology, 106(2): 130-137.
  • 46. Xie, M., Qin, H., Luo, Q., Huang, Q., He, X., Yang, Z., Lan, P. & Lian, L. 2017. Microrna-30a regulates cell proliferation and tumor growth of colorectal cancer by targeting CD73. BMC Cancer, 17(1): 305.
  • 47. Yu, M., Guo, G., Huang, L., Deng, L., Chang, C.‑S., Achyut, B.R., Canning, M., Xu, N., Arbab, A.S., Bollag, R.J., Rodriguez, P.C., Mellor, A.L., Shi, H., Munn, D.H. & Cui, Y. 2020. Cd73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nature Communications, 11(1): 515.
  • 48. Zhi, X., Chen, S., Zhou, P., Shao, Z., Wang, L., Ou, Z. & Yin, L. 2007. Rna interference of ecto-5'-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clinical & Experimental Metastasis, 24(6): 439-448.
  • 49. Zhou, P., Zhi, X., Zhou, T., Chen, S., Li, X., Wang, L., Yin, L., Shao, Z. & Ou, Z. 2007. Overexpression of Ecto-5'-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biology & Therapy, 6(3): 426-431.
There are 49 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article/Araştırma Makalesi
Authors

Serkan Göktuna 0000-0001-6169-768X

Project Number 118S399
Publication Date October 15, 2022
Submission Date July 6, 2022
Acceptance Date September 6, 2022
Published in Issue Year 2022

Cite

APA Göktuna, S. (2022). CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER. Trakya University Journal of Natural Sciences, 23(2), 177-184. https://doi.org/10.23902/trkjnat.1139062
AMA Göktuna S. CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER. Trakya Univ J Nat Sci. October 2022;23(2):177-184. doi:10.23902/trkjnat.1139062
Chicago Göktuna, Serkan. “CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER”. Trakya University Journal of Natural Sciences 23, no. 2 (October 2022): 177-84. https://doi.org/10.23902/trkjnat.1139062.
EndNote Göktuna S (October 1, 2022) CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER. Trakya University Journal of Natural Sciences 23 2 177–184.
IEEE S. Göktuna, “CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER”, Trakya Univ J Nat Sci, vol. 23, no. 2, pp. 177–184, 2022, doi: 10.23902/trkjnat.1139062.
ISNAD Göktuna, Serkan. “CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER”. Trakya University Journal of Natural Sciences 23/2 (October 2022), 177-184. https://doi.org/10.23902/trkjnat.1139062.
JAMA Göktuna S. CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER. Trakya Univ J Nat Sci. 2022;23:177–184.
MLA Göktuna, Serkan. “CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER”. Trakya University Journal of Natural Sciences, vol. 23, no. 2, 2022, pp. 177-84, doi:10.23902/trkjnat.1139062.
Vancouver Göktuna S. CHARACTERIZATION OF DIFFERENTIAL EXPRESSION PATTERNS OF THE EXTRACELLULAR PURINERGIC ENZYMES IN COLORECTAL CANCER. Trakya Univ J Nat Sci. 2022;23(2):177-84.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.