Research Article
BibTex RIS Cite

Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters

Year 2024, , 41 - 54, 15.04.2024
https://doi.org/10.23902/trkjnat.1317293

Abstract

Although the use of oily waste as a cost-effective substrate for lipase production has recently gained importance, shea-nut cake (SNC) remains under-explored in this regard. Lipases of thermophilic origin such as hot compost bacteria are of significant biotechnological and industrial importance due to favorable robust properties. This study describes the optimization of nutritional parameters for improving lipase production by a thermophilic lipase producing bacteria isolated from hot compost using Response Surface Methodology (RSM). The bacteria were isolated on tributyrin agar plate and used for lipase production on olive oil, SNC and their combination. Using Plackett-Burman Design (PBD) for screening and Central Composite Design (CCD) of RSM for optimization studies, factors influencing lipase production on SNC substrate were identified. One of the four most potent isolates, Bacillus velezensis EAC9, was identified using 16S rRNA and observed to show the maximum lipase activity on a mixture of olive oil and SNC (103.66 U/mL), which was higher than that of olive oil (65.22 U/mL) and SNC (41.72 U/mL) alone. The validity of the optimization model was confirmed, and an optimum medium containing olive oil and Tween 80 at 1.0% (v/v), sucrose at 1.0% (w/v), and (NH4)2SO4 at 0.1% (w/v) resulted in maximum lipase production at 200 U/mL, a 4.79-fold increase over the unoptimized medium. The findings suggest that SNC could be considered a cheap substrate for enhancing lipase production by the thermophilic B. velezensis EAC9 and suggest a model of nutritional parameters for optimal lipase production which could be scale up for industrial applications.

Ethical Statement

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

References

  • 1. Abdel-Fattah, Y.R., Soliman, N.A., Yousef, S.M. & El-Helow, E.R. 2012. Application of experimental designs to optimize medium composition for production of thermostable lipase/esterase by Geobacillus thermodenitrificans AZ1. Journal of Genetic Engineering and Biotechnology, 10(2): 193-200. https://doi.org/10.1016/j.jgeb.2012.08.001
  • 2. Abdelkader, I., Ben Mabrouk, S., Hadrich, B., Refai, M., Fendri, A. & Sayari, A. 2023. Optimization using response surface methodology of phospholipase C production from Bacillus cereus suitable for soybean oil degumming. Preparative Biochemistry and Biotechnology, 53(10): 1165-1175. https://doi.org/10.1080/10826068.2023.2177867
  • 3. Akhter, K., Karim, I., Aziz, B., Bibi, A., Khan, J. & Akhtar, T. 2022. Optimization and characterization of alkaliphilic lipase from a novel Bacillus cereus NC7401 strain isolated from diesel fuel polluted soil. Plos one, 17(8): e0273368. https://doi.org/10.1371/journal.pone.0273368
  • 4. Alex, A., Verghese, J., Kumar, S. & Salim, K. 2017. Role of serum amylase and lipase levels in the classification of acute pancreatitis according to revised atlanta classification. Journal of Medical Science and Clinical Research, 5: 19448-19452. https://dx.doi.org/10.18535/jmscr/v5i3.177
  • 5. Almeida, J.M., Martini, V.P., Iulek, J., Alnoch, R.C., Moure, V.R., Müller-Santos, M., Souza, E.M., Mitchell, D.A. & Krieger, N. 2019. Biochemical characterization and application of a new lipase and its cognate foldase obtained from a metagenomic library derived from fat-contaminated soil. International Journal of Biological Macromolecules, 137: 442-454. https://doi.org/10.1016/j.ijbiomac.2019.06.203
  • 6. Amenaghawon, A.N., Odika, P. & Aiwekhoe, S.E. 2022. Optimization of nutrient medium composition for the production of lipase from waste cooking oil using response surface methodology and artificial neural networks. Chemical Engineering Communications 209(11): 1531-1541. https://doi.org/10.1080/00986445.2021.1980395
  • 7. Ameri, A., Shakibaie, M., Soleimani-Kermani, M., Faramarzi, M.A., Doostmohammadi, M. & Forootanfar, H. 2019. Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components. Preparative Biochemistry and Biotechnology, 49(2): 184-191. https://doi.org/10.1080/10826068.2019.1566148
  • 8. Amin, A., Ahmed, I., Khalid, N., Zhang, Y., Xiao, M. & Li, W.J. 2018. Insights into the thermophile diversity in hot springs of Pakistan, pp. 1-28. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Springer, Singapore. XI+464 pp. https://doi.org/10.1007/978-981-13-0329-6_1
  • 9. Ansari, I., Kumar, R., Sundararajan, M., Maiti, D., Rather, M.A. & Ali, M. 2018. Investigation on growth of oil degrading thermophilic bacteria isolated from hot spring. Biosciences Biotechnology Research Asia, 15(4): 805-815 https://doi.org/10. 13005/bbra/2689
  • 10. Balaji, L., Chittoor, J.T. & Jayaraman, G. 2020. Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in pretreatment of food industry effluents. Preparative Biochemistry and Biotechnology, 50(7): 708-716. https://doi.org/10.1080/10826068.2020.1734936
  • 11. Baltaci, M.Ö., Tuysuz, E., Ozkan, H., Taskin, M. & Adiguzel, A. 2019. Lipase production from thermophilic bacteria using waste frying oil as substrate. Teknik Bilimler Dergisi, 9(3): 23-27. https://doi.org/10.35354/tbed.510140
  • 12. Barbosa, A.M., Messias, J.M., Andrade, M.M., Dekker, R.F. & Venkatesagowda, B. 2011. Soybean oil and meal as substrates for lipase production by Botryosphaeria ribis, and soybean oil to enhance the production of botryosphaeran by Botryosphaeria rhodina, pp. 101-118. In: Tzi, B.N (ed.). Soybean-Biochemistry, Chemistry and Physiology, InTech Publishers New York. 656 pp. https://doi.org/10.13140/2.1.4367.4562
  • 13. Baş, D. & Boyacı, I.H. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3): 836-845. https://doi.org/10.1016/j.jfoodeng.2005.11.024Get rights and content
  • 14. Carrazco-Palafox, J., Rivera-Chavira, B.E., Ramírez-Baca, N., Manzanares-Papayanopoulos, L.I. & Nevárez-Moorillón, G.V. 2018. Improved method for qualitative screening of lipolytic bacterial strains. MethodsX, 5: 68-74. https://doi.org/10.1016/j.mex.2018.01.004
  • 15. do Nascimento, F.V., de Castro, A.M., Secchi, A.R. & Coelho, M.A.Z. 2021. Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochemical Engineering Journal, 166: 107866. https://doi.org/10.1016/j.bej.2020.107866
  • 16. Duan, X., Zhai, W., Li, X., Wu, S., Wang, Y., Wang, L., Basang, W., Zhu, Yanbin & Gao, Y. 2023. Preparation, purification, and biochemical of fat-degrading bacterial enzymes from pig carcass compost and its application. BMC Biotechnology, 23: 48. https://doi.org/10.1186/s12896-023-00818-1
  • 17. Dwi, M.P., Muh, N., Setya, H., Arif, A.S. & Asih, P.Y. 2021. Extracellular enzymes of Bacillus licheniformis from milkfish gut as degradation agent of Chlorella vulgaris cell wall. Research Journal of Biotechnology 16(3): 68-75.
  • 18. Fathi, F., Mobarak Qamsari, E., Kasra Kermanshahi, R., Moosavi-Nejad, Z. & Ghashghaei, T. 2022. Optimization of lipase production by a newly isolate of Lactobacillus fermentum. Iranian Journal of Science and Technology, Transactions A: Science, 46(4): 1103-1113. https://doi.org/10.1007/s40995-022-01322-5
  • 19. Fatima, S., Faryad, A., Ataa, A., Joyia, F.A. & Parvaiz, A. 2021. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3): 445-458. https://doi.org/10.1002/bab.2019
  • 20. Fibriana, F., Upaichit, A. & Cheirsilp, B. 2022. Statistical optimization for cost-effective production of yeast-bacterium cell-bound lipases using blended oily wastes and their potential applications in biodiesel synthesis and wastewater bioremediation. Fermentation, 8: 411. https://doi.org/10.3390/fermentation8080411
  • 21. Geoffry, K. & Achur, R.N. 2018. Optimization of novel halophilic lipase production by Fusarium solani strain NFCCL 4084 using palm oil mill effluent. Journal of Genetic Engineering and Biotechnology, 16(2): 327-334. https://doi.org/10.1016/j.jgeb.2018.04.003
  • 22. Girdhari, S. & Pathak, A.P. 2022. Isolation and identification of thermo stable multi catalytic Bacillus licheniformis strain V7 from Ganeshpuri hot spring. Indian Journal of Natural Products and Resources, 13(3): 356-361. https://doi.org/10.56042./ijnpr.v13i3.38114
  • 23. Ilesanmi, O.I., Adekunle, A.E., Omolaiye, J.A., Olorode, E.M. & Ogunkanmi, A.L. 2020. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Scientific African, 8: e00279. https://doi.org/10.1016/j.sciaf.2020.e00279
  • 24. Isiaka, A.A. & Olufolahan, O.A. 2018. Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnology and Biotechnological Equipment, 32(6): 1514-1526. https://doi.org/10.1080/13102818.2018.151498
  • 25. Ji, Y., Wang, N., Yang, N., Chen, X., Liu, Q., Wang, Z., Shi, J., & Liu, L. 2023. Multivariate insights into the effects of inoculating thermophilic aerobic bacteria on the biodegradation of food waste: Process properties, organic degradation and bacterial communities. Environmental Technology and Innovation, 29: 102968. https://doi.org/10.1016/j.eti.2022.102968
  • 26. Kaur, M., & Gupta, R. 2023. Statistical approach for lipase production from thermotolerant Bacillus subtilis TTP-06 isolated from a hot spring. https://www.authorea.com/users/581825/articles/622234-statistical-approach-for-lipase-production-from-thermotolerant-bacillus-subtilis-ttp-06-isolated-from-a-hot-spring https://doi.org/10.22541/au.167525490.03573741/v1 (Date accessed: 02.08.2024).
  • 27. Kebabaci, Ö. & Cihangir, N. 2022. A novel yeast isolated from olive mill waste Candida tropicalis; optimization of medium composition for lipase production. Mantar Dergisi, 13(1): 8-14.
  • 28. Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  • 29. Kwon, D.Y. & Rhee, J.S. 1986. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of the American Oil Chemists' Society, 63(1): 89-92. https://doi.org/10.1007/BF02676129
  • 30. Lakshmi, D. & Dhandayuthapani, K. 2022. Statistical optimization of lipase production from mutagenic strain of newly isolated Bacillus licheniformis MLP. Mapana Journal of Sciences, 21(4): 21-45. https://doi.org/10.12723/mjs.63.2
  • 31. Lanka, S. & Latha, J.N.L. 2015. A short review on various screening methods to isolate potential lipase producers: lipases-the present and future enzymes of biotech industry. International Journal of Biological Chemistry, 9(5): 207-219. https://doi.org/10.3923/ijbc.2015.207.219
  • 32. Lau, H.L., Wong, F.W.F., Rahman, R.N.Z.R.A., Mohamed, M.S., Ariff, A.B. & Hii, S. L. 2023. Optimization of fermentation medium components by response surface methodology (RSM) and artificial neural network hybrid with genetic algorithm (ANN-GA) for lipase production by Burkholderia cenocepacia ST8 using used automotive engine oil as substrate. Biocatalysis and Agricultural Biotechnology, 50: 102696. https://doi.org/10.1016/j.bcab.2023.102696
  • 33. Leykun, S., Johansson, E., Vetukuri, R. R., Ceresino, E. B., & Gessesse, A. 2023. A thermostable organic solvent-tolerant lipase from Brevibacillus sp.: production and integrated downstream processing using an alcohol-salt-based aqueous two-phase system. Frontiers in microbiology, 14: 1270270. https://doi.org/10.3389/fmicb.2023.1270270
  • 34. López-López, O., Cerdan, M.E. & Gonzalez Siso, M.I. 2014. New extremophilic lipases and esterases from metagenomics. Current Protein and Peptide Science, 15(5): 445-455. https://doi.org/10.2174/1389203715666140228153801
  • 35. Mazhar, H., Ullah, I., Ali, U., Abbas, N., Hussain, Z., Ali, S.S. & Zhu, H. 2023. Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. Biocatalysis and Agricultural Biotechnology, 47: 102559. https://doi.org/10.1016/j.bcab.2022.102559
  • 36. Mobarak-Qamsari, E., Kasra-Kermanshahi, R. & Moosavi-Nejad, Z. 2011. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iranian Journal of Microbiology, 3(2): 92-98.
  • 37. Neethu, C., Rahiman, K.M., Rosmine, E., Saramma, A. & Hatha, A.M. 2015. Utilization of agro-industrial wastes for the production of lipase from Stenotrophomonas maltophilia isolated from Arctic and optimization of physical parameters. Biocatalysis and Agricultural Biotechnology, 4(4): 703-709. https://doi.org/10.1016/j.bcab.2015.09.002
  • 38. Nomwesigwa, C., Noby, N., Hammad, S. & Abdel-Mawgood, A. 2023. Screening for extremophilic lipase producing bacteria: partial purification and characterization of thermo-halophilic, solvent tolerant lipase from Bacillus sp. International Journal of Engineering and Technology, 15(1): 7-11. https://doi.org/10.7763/IJET.2023.V15.1210
  • 39. Oliveira, F., Souza, C.E., Peclat, V.R., Salgado, J.M., Ribeiro, B.D., Coelho, M.A., Venâncio, A. & Belo, I. 2017. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 102: 268-277. https://doi.org/10.1016/j.fbp.2017.01.007
  • 40. Oshoma, C., Kolawole, E. & Ikenebomeh, M. 2021. The influence of nitrogen supplementation on lipase production by Aspergillus niger using palm oil mill effluent. Ife Journal of Science, 23(1): 1-10. https://doi.org/10.4314/ijs.v23i1.1
  • 41. Ovando-Chacon, S.L., Tacias-Pascacio, V.G., Ovando-Chacon, G.E., Rosales-Quintero, A., Rodriguez-Leon, A., Ruiz-Valdiviezo, V.M. & Servin-Martinez, A. 2020. Characterization of thermophilic microorganisms in the geothermal water flow of El Chichón volcano Crater lake. Water, 12: 2172. https://doi.org/10.3390/w12082172
  • 42. Pascoal, A., Estevinho, L.M., Martins, I.M. & Choupina, A.B. 2018. Novel sources and functions of microbial lipases and their role in the infection mechanisms. Physiological and Molecular Plant Pathology, 104: 119-126. https://doi.org/10.1016/j.ijbiomac.2019.06.203
  • 43. Patel, G.B., Shah, K.R., Shindhal, T., Rakholiya, P. & Varjani, S. 2021. Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained actinomycete. Environmental Technology and Innovation, 23: 101724. https://doi.org/10.1016/j.eti.2021.101724
  • 44. Pinotti, L.M., Lacerda, J., Oliveira, M., Teixeira, R., Rodrigues, C. & Cassini, S. 2017. Production of lipolytic enzymes using agro-industrial residues. Chemical Engineering Transactions, 56: 1897-1902. https://doi.org/10.3303/CET1756317
  • 45. Plackett, R.L. & Burman, J.P. 1946. The design of optimum multifactorial experiments. Biometrika. 33: 305-325. https://doi.org/10.2307/2332195
  • 46. Purkan, P., Lestari, I.T., Arissirajudin, R., Rahayu, R., Ningsih, P., Apriyani, W., Nurlaila, H., Sumarsih, S., Hadi, S. & Retnowati, W. 2020. Isolation of lipolytic bacteria from domestic waste compost and its application to biodiesel production. Rasayan Journal of Chemistry, 13(4): 2074-2084. https://doi.org/10.31788/RJC.2020.1345697
  • 47. Putri, D.N., Khootama, A., Perdani, M.S., Utami, T.S. & Hermansyah, H. 2020. Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Reports, 6: 331-335. https://doi.org/10.1016/j.egyr.2019.08.064
  • 48. Rahman, R.N.Z.R.A., Leow, T.C., Salleh, A.B. & Basri, M. 2007. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiology, 7: 77. https://doi.org/10.1186/1471-2180-7-77
  • 49. Ramani, K., Saranya, P., Jain, S.C. & Sekaran, G. 2013. Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess and Biosystems Engineering, 36(3): 301-315. https://doi.org/10.1007/s00449-012-0785-2.
  • 50. Roslan, M.A.M., Jefri, N.Q.U.A., Ramlee, N., Rahman, N.A.A., Chong, N.H.H., Bunawan, H., Bharudin, I. Kadir, M.H.A., Mohammad, M. & Razali, H. 2021. Enhancing food waste biodegradation rate in a food waste biodigester with the synergistic action of hydrolase-producing Bacillus paralicheniformis GRA2 and Bacillus velezensis TAP5 co-culture inoculation. Saudi Journal of Biological Sciences, 28(5): 3001-3012. https://doi.org/10.1016/j.sjbs.2021.02.041
  • 51. Sahoo, R.K., Das, A., Gaur, M., Sahu, A., Sahoo, S., Dey, S., Rahman, P.K. & Subudhi, E. 2020. Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive. Preparative Biochemistry and Biotechnology, 50(6): 578-584. https://doi.org/10.1080/10826068.2020.1719513
  • 52. Salihu, A., Bala, M. & Bala, S.M. 2013. Application of Plackett-Burman experimentadesign for lipase production by Aspergillus niger using shea butter cake. International Scholarly Research Notices, 2013: 718352. https://doi.org/10.5402/2013/718352
  • 53. Stathopoulou, P.M., Savvides, A.L., Karagouni, A.D. & Hatzinikolaou, D.G. 2013. Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment. BioMed Research International, 2013: 703130. https://doi.org/10.1155/2013/703130
  • 54. Subramoni, S., Suárez-Moreno, Z. & Venturi, V. 2010. Lipases as pathogenicity factors of plant pathogens, pp. 3269-3277. In: Timmis, K.N (ed.). Handbook of Hydrocarbon and Lipid microbiology. Springer, Berlin, Heidelberg. DLII+4699 pp. https://doi.org/10.1007/978-3-540-77587-4_248
  • 55. Suci, M., Arbianti, R. & Hermansyah, H. 2018. Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. IOP Conference Series: Earth and Environmental Science. 105: 012126. https://doi.org/10.1088/1755-1315/105/1/012126
  • 56. Tamura, K., Nei, M. & Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy Sciences of the United States of America. 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  • 57. Trindade, L.C.D., Marques, E., Lopes, D.B. & Ferreira, M.Á.S.V. 2007. Development of a molecular method for detection and identification of Xanthomonas campestris pv. viticola. Summa Phytopathologica, 33: 16-23. https://doi.org/10.1590/S0100-54052007000100002
Year 2024, , 41 - 54, 15.04.2024
https://doi.org/10.23902/trkjnat.1317293

Abstract

Yağlı atıkların lipaz üretimi için uygun maliyetli bir substrat olarak kullanılması giderek önem kazanmaktadır. Ancak shea tohumu özütü (SNC) bu bakımdan yeterince araştırılmamıştır. Sıcak kompost bakterileri gibi termofilik kökenli lipazlar, uygun ve dirençli özellikleri nedeniyle anlamlı biyoteknolojik ve endüstriyel öneme sahiptir. Bu araştırma, Yanıt Yüzey Yöntemi (RSM) kullanılarak sıcak komposttan izole edilen termofilik lipaz üreten bakteriler tarafından lipaz üretiminin iyileştirilmesi için beslenme parametrelerinin optimizasyonunu açıklamaktadır. Bakteriler tribütirin agar plakası üzerinde izole edildi ve zeytinyağı, SNC ve bunların kombinasyonlarında lipaz üretimi için kullanıldı. Tarama için Plackett-Burman Tasarımı (PBD) ve optimizasyon çalışmaları için RSM'nin Merkezi Bileşik Tasarımı (CCD) kullanılarak, SNC substratı üzerinde lipaz üretimini etkileyen faktörler belirlendi. En güçlü dört izolattan biri olan Bacillus velezensis EAC9, 16S rRNA kullanılarak tanımlandı ve zeytinyağı ve SNC karışımında (103,66 U/mL) maksimum lipaz aktivitesi gözlendi. Bu aktivite tek başına zeytinyağından (65,22) ve SNC'den (41,72 U/mL) daha yüksekti. Optimizasyon modelinin geçerliliği doğrulandı ve % 1.0 (v/v) zeytinyağı ve Tween 80, % 1.0 (w/v) sakaroz ve % 0.1 (w/v) (NH4)2SO4 içeren optimum ortam, maksimum lipaz üretimiyle. 200 U/mL'de optimize edilmemiş ortama göre 4,79 kat artış ile sonuçlandı. Bulgular, SNC'nin, termofilik B. velezensis EAC9 tarafından lipaz üretimini arttırmak için ucuz bir substrat olarak düşünülebileceğini ve endüstriyel uygulamalar için ölçeklendirilebilecek optimal lipaz üretimi için bir beslenme parametreleri modeli önerdiğini göstermektedir.

References

  • 1. Abdel-Fattah, Y.R., Soliman, N.A., Yousef, S.M. & El-Helow, E.R. 2012. Application of experimental designs to optimize medium composition for production of thermostable lipase/esterase by Geobacillus thermodenitrificans AZ1. Journal of Genetic Engineering and Biotechnology, 10(2): 193-200. https://doi.org/10.1016/j.jgeb.2012.08.001
  • 2. Abdelkader, I., Ben Mabrouk, S., Hadrich, B., Refai, M., Fendri, A. & Sayari, A. 2023. Optimization using response surface methodology of phospholipase C production from Bacillus cereus suitable for soybean oil degumming. Preparative Biochemistry and Biotechnology, 53(10): 1165-1175. https://doi.org/10.1080/10826068.2023.2177867
  • 3. Akhter, K., Karim, I., Aziz, B., Bibi, A., Khan, J. & Akhtar, T. 2022. Optimization and characterization of alkaliphilic lipase from a novel Bacillus cereus NC7401 strain isolated from diesel fuel polluted soil. Plos one, 17(8): e0273368. https://doi.org/10.1371/journal.pone.0273368
  • 4. Alex, A., Verghese, J., Kumar, S. & Salim, K. 2017. Role of serum amylase and lipase levels in the classification of acute pancreatitis according to revised atlanta classification. Journal of Medical Science and Clinical Research, 5: 19448-19452. https://dx.doi.org/10.18535/jmscr/v5i3.177
  • 5. Almeida, J.M., Martini, V.P., Iulek, J., Alnoch, R.C., Moure, V.R., Müller-Santos, M., Souza, E.M., Mitchell, D.A. & Krieger, N. 2019. Biochemical characterization and application of a new lipase and its cognate foldase obtained from a metagenomic library derived from fat-contaminated soil. International Journal of Biological Macromolecules, 137: 442-454. https://doi.org/10.1016/j.ijbiomac.2019.06.203
  • 6. Amenaghawon, A.N., Odika, P. & Aiwekhoe, S.E. 2022. Optimization of nutrient medium composition for the production of lipase from waste cooking oil using response surface methodology and artificial neural networks. Chemical Engineering Communications 209(11): 1531-1541. https://doi.org/10.1080/00986445.2021.1980395
  • 7. Ameri, A., Shakibaie, M., Soleimani-Kermani, M., Faramarzi, M.A., Doostmohammadi, M. & Forootanfar, H. 2019. Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components. Preparative Biochemistry and Biotechnology, 49(2): 184-191. https://doi.org/10.1080/10826068.2019.1566148
  • 8. Amin, A., Ahmed, I., Khalid, N., Zhang, Y., Xiao, M. & Li, W.J. 2018. Insights into the thermophile diversity in hot springs of Pakistan, pp. 1-28. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Springer, Singapore. XI+464 pp. https://doi.org/10.1007/978-981-13-0329-6_1
  • 9. Ansari, I., Kumar, R., Sundararajan, M., Maiti, D., Rather, M.A. & Ali, M. 2018. Investigation on growth of oil degrading thermophilic bacteria isolated from hot spring. Biosciences Biotechnology Research Asia, 15(4): 805-815 https://doi.org/10. 13005/bbra/2689
  • 10. Balaji, L., Chittoor, J.T. & Jayaraman, G. 2020. Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in pretreatment of food industry effluents. Preparative Biochemistry and Biotechnology, 50(7): 708-716. https://doi.org/10.1080/10826068.2020.1734936
  • 11. Baltaci, M.Ö., Tuysuz, E., Ozkan, H., Taskin, M. & Adiguzel, A. 2019. Lipase production from thermophilic bacteria using waste frying oil as substrate. Teknik Bilimler Dergisi, 9(3): 23-27. https://doi.org/10.35354/tbed.510140
  • 12. Barbosa, A.M., Messias, J.M., Andrade, M.M., Dekker, R.F. & Venkatesagowda, B. 2011. Soybean oil and meal as substrates for lipase production by Botryosphaeria ribis, and soybean oil to enhance the production of botryosphaeran by Botryosphaeria rhodina, pp. 101-118. In: Tzi, B.N (ed.). Soybean-Biochemistry, Chemistry and Physiology, InTech Publishers New York. 656 pp. https://doi.org/10.13140/2.1.4367.4562
  • 13. Baş, D. & Boyacı, I.H. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3): 836-845. https://doi.org/10.1016/j.jfoodeng.2005.11.024Get rights and content
  • 14. Carrazco-Palafox, J., Rivera-Chavira, B.E., Ramírez-Baca, N., Manzanares-Papayanopoulos, L.I. & Nevárez-Moorillón, G.V. 2018. Improved method for qualitative screening of lipolytic bacterial strains. MethodsX, 5: 68-74. https://doi.org/10.1016/j.mex.2018.01.004
  • 15. do Nascimento, F.V., de Castro, A.M., Secchi, A.R. & Coelho, M.A.Z. 2021. Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochemical Engineering Journal, 166: 107866. https://doi.org/10.1016/j.bej.2020.107866
  • 16. Duan, X., Zhai, W., Li, X., Wu, S., Wang, Y., Wang, L., Basang, W., Zhu, Yanbin & Gao, Y. 2023. Preparation, purification, and biochemical of fat-degrading bacterial enzymes from pig carcass compost and its application. BMC Biotechnology, 23: 48. https://doi.org/10.1186/s12896-023-00818-1
  • 17. Dwi, M.P., Muh, N., Setya, H., Arif, A.S. & Asih, P.Y. 2021. Extracellular enzymes of Bacillus licheniformis from milkfish gut as degradation agent of Chlorella vulgaris cell wall. Research Journal of Biotechnology 16(3): 68-75.
  • 18. Fathi, F., Mobarak Qamsari, E., Kasra Kermanshahi, R., Moosavi-Nejad, Z. & Ghashghaei, T. 2022. Optimization of lipase production by a newly isolate of Lactobacillus fermentum. Iranian Journal of Science and Technology, Transactions A: Science, 46(4): 1103-1113. https://doi.org/10.1007/s40995-022-01322-5
  • 19. Fatima, S., Faryad, A., Ataa, A., Joyia, F.A. & Parvaiz, A. 2021. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3): 445-458. https://doi.org/10.1002/bab.2019
  • 20. Fibriana, F., Upaichit, A. & Cheirsilp, B. 2022. Statistical optimization for cost-effective production of yeast-bacterium cell-bound lipases using blended oily wastes and their potential applications in biodiesel synthesis and wastewater bioremediation. Fermentation, 8: 411. https://doi.org/10.3390/fermentation8080411
  • 21. Geoffry, K. & Achur, R.N. 2018. Optimization of novel halophilic lipase production by Fusarium solani strain NFCCL 4084 using palm oil mill effluent. Journal of Genetic Engineering and Biotechnology, 16(2): 327-334. https://doi.org/10.1016/j.jgeb.2018.04.003
  • 22. Girdhari, S. & Pathak, A.P. 2022. Isolation and identification of thermo stable multi catalytic Bacillus licheniformis strain V7 from Ganeshpuri hot spring. Indian Journal of Natural Products and Resources, 13(3): 356-361. https://doi.org/10.56042./ijnpr.v13i3.38114
  • 23. Ilesanmi, O.I., Adekunle, A.E., Omolaiye, J.A., Olorode, E.M. & Ogunkanmi, A.L. 2020. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Scientific African, 8: e00279. https://doi.org/10.1016/j.sciaf.2020.e00279
  • 24. Isiaka, A.A. & Olufolahan, O.A. 2018. Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnology and Biotechnological Equipment, 32(6): 1514-1526. https://doi.org/10.1080/13102818.2018.151498
  • 25. Ji, Y., Wang, N., Yang, N., Chen, X., Liu, Q., Wang, Z., Shi, J., & Liu, L. 2023. Multivariate insights into the effects of inoculating thermophilic aerobic bacteria on the biodegradation of food waste: Process properties, organic degradation and bacterial communities. Environmental Technology and Innovation, 29: 102968. https://doi.org/10.1016/j.eti.2022.102968
  • 26. Kaur, M., & Gupta, R. 2023. Statistical approach for lipase production from thermotolerant Bacillus subtilis TTP-06 isolated from a hot spring. https://www.authorea.com/users/581825/articles/622234-statistical-approach-for-lipase-production-from-thermotolerant-bacillus-subtilis-ttp-06-isolated-from-a-hot-spring https://doi.org/10.22541/au.167525490.03573741/v1 (Date accessed: 02.08.2024).
  • 27. Kebabaci, Ö. & Cihangir, N. 2022. A novel yeast isolated from olive mill waste Candida tropicalis; optimization of medium composition for lipase production. Mantar Dergisi, 13(1): 8-14.
  • 28. Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  • 29. Kwon, D.Y. & Rhee, J.S. 1986. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of the American Oil Chemists' Society, 63(1): 89-92. https://doi.org/10.1007/BF02676129
  • 30. Lakshmi, D. & Dhandayuthapani, K. 2022. Statistical optimization of lipase production from mutagenic strain of newly isolated Bacillus licheniformis MLP. Mapana Journal of Sciences, 21(4): 21-45. https://doi.org/10.12723/mjs.63.2
  • 31. Lanka, S. & Latha, J.N.L. 2015. A short review on various screening methods to isolate potential lipase producers: lipases-the present and future enzymes of biotech industry. International Journal of Biological Chemistry, 9(5): 207-219. https://doi.org/10.3923/ijbc.2015.207.219
  • 32. Lau, H.L., Wong, F.W.F., Rahman, R.N.Z.R.A., Mohamed, M.S., Ariff, A.B. & Hii, S. L. 2023. Optimization of fermentation medium components by response surface methodology (RSM) and artificial neural network hybrid with genetic algorithm (ANN-GA) for lipase production by Burkholderia cenocepacia ST8 using used automotive engine oil as substrate. Biocatalysis and Agricultural Biotechnology, 50: 102696. https://doi.org/10.1016/j.bcab.2023.102696
  • 33. Leykun, S., Johansson, E., Vetukuri, R. R., Ceresino, E. B., & Gessesse, A. 2023. A thermostable organic solvent-tolerant lipase from Brevibacillus sp.: production and integrated downstream processing using an alcohol-salt-based aqueous two-phase system. Frontiers in microbiology, 14: 1270270. https://doi.org/10.3389/fmicb.2023.1270270
  • 34. López-López, O., Cerdan, M.E. & Gonzalez Siso, M.I. 2014. New extremophilic lipases and esterases from metagenomics. Current Protein and Peptide Science, 15(5): 445-455. https://doi.org/10.2174/1389203715666140228153801
  • 35. Mazhar, H., Ullah, I., Ali, U., Abbas, N., Hussain, Z., Ali, S.S. & Zhu, H. 2023. Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. Biocatalysis and Agricultural Biotechnology, 47: 102559. https://doi.org/10.1016/j.bcab.2022.102559
  • 36. Mobarak-Qamsari, E., Kasra-Kermanshahi, R. & Moosavi-Nejad, Z. 2011. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iranian Journal of Microbiology, 3(2): 92-98.
  • 37. Neethu, C., Rahiman, K.M., Rosmine, E., Saramma, A. & Hatha, A.M. 2015. Utilization of agro-industrial wastes for the production of lipase from Stenotrophomonas maltophilia isolated from Arctic and optimization of physical parameters. Biocatalysis and Agricultural Biotechnology, 4(4): 703-709. https://doi.org/10.1016/j.bcab.2015.09.002
  • 38. Nomwesigwa, C., Noby, N., Hammad, S. & Abdel-Mawgood, A. 2023. Screening for extremophilic lipase producing bacteria: partial purification and characterization of thermo-halophilic, solvent tolerant lipase from Bacillus sp. International Journal of Engineering and Technology, 15(1): 7-11. https://doi.org/10.7763/IJET.2023.V15.1210
  • 39. Oliveira, F., Souza, C.E., Peclat, V.R., Salgado, J.M., Ribeiro, B.D., Coelho, M.A., Venâncio, A. & Belo, I. 2017. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 102: 268-277. https://doi.org/10.1016/j.fbp.2017.01.007
  • 40. Oshoma, C., Kolawole, E. & Ikenebomeh, M. 2021. The influence of nitrogen supplementation on lipase production by Aspergillus niger using palm oil mill effluent. Ife Journal of Science, 23(1): 1-10. https://doi.org/10.4314/ijs.v23i1.1
  • 41. Ovando-Chacon, S.L., Tacias-Pascacio, V.G., Ovando-Chacon, G.E., Rosales-Quintero, A., Rodriguez-Leon, A., Ruiz-Valdiviezo, V.M. & Servin-Martinez, A. 2020. Characterization of thermophilic microorganisms in the geothermal water flow of El Chichón volcano Crater lake. Water, 12: 2172. https://doi.org/10.3390/w12082172
  • 42. Pascoal, A., Estevinho, L.M., Martins, I.M. & Choupina, A.B. 2018. Novel sources and functions of microbial lipases and their role in the infection mechanisms. Physiological and Molecular Plant Pathology, 104: 119-126. https://doi.org/10.1016/j.ijbiomac.2019.06.203
  • 43. Patel, G.B., Shah, K.R., Shindhal, T., Rakholiya, P. & Varjani, S. 2021. Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained actinomycete. Environmental Technology and Innovation, 23: 101724. https://doi.org/10.1016/j.eti.2021.101724
  • 44. Pinotti, L.M., Lacerda, J., Oliveira, M., Teixeira, R., Rodrigues, C. & Cassini, S. 2017. Production of lipolytic enzymes using agro-industrial residues. Chemical Engineering Transactions, 56: 1897-1902. https://doi.org/10.3303/CET1756317
  • 45. Plackett, R.L. & Burman, J.P. 1946. The design of optimum multifactorial experiments. Biometrika. 33: 305-325. https://doi.org/10.2307/2332195
  • 46. Purkan, P., Lestari, I.T., Arissirajudin, R., Rahayu, R., Ningsih, P., Apriyani, W., Nurlaila, H., Sumarsih, S., Hadi, S. & Retnowati, W. 2020. Isolation of lipolytic bacteria from domestic waste compost and its application to biodiesel production. Rasayan Journal of Chemistry, 13(4): 2074-2084. https://doi.org/10.31788/RJC.2020.1345697
  • 47. Putri, D.N., Khootama, A., Perdani, M.S., Utami, T.S. & Hermansyah, H. 2020. Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Reports, 6: 331-335. https://doi.org/10.1016/j.egyr.2019.08.064
  • 48. Rahman, R.N.Z.R.A., Leow, T.C., Salleh, A.B. & Basri, M. 2007. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiology, 7: 77. https://doi.org/10.1186/1471-2180-7-77
  • 49. Ramani, K., Saranya, P., Jain, S.C. & Sekaran, G. 2013. Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess and Biosystems Engineering, 36(3): 301-315. https://doi.org/10.1007/s00449-012-0785-2.
  • 50. Roslan, M.A.M., Jefri, N.Q.U.A., Ramlee, N., Rahman, N.A.A., Chong, N.H.H., Bunawan, H., Bharudin, I. Kadir, M.H.A., Mohammad, M. & Razali, H. 2021. Enhancing food waste biodegradation rate in a food waste biodigester with the synergistic action of hydrolase-producing Bacillus paralicheniformis GRA2 and Bacillus velezensis TAP5 co-culture inoculation. Saudi Journal of Biological Sciences, 28(5): 3001-3012. https://doi.org/10.1016/j.sjbs.2021.02.041
  • 51. Sahoo, R.K., Das, A., Gaur, M., Sahu, A., Sahoo, S., Dey, S., Rahman, P.K. & Subudhi, E. 2020. Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive. Preparative Biochemistry and Biotechnology, 50(6): 578-584. https://doi.org/10.1080/10826068.2020.1719513
  • 52. Salihu, A., Bala, M. & Bala, S.M. 2013. Application of Plackett-Burman experimentadesign for lipase production by Aspergillus niger using shea butter cake. International Scholarly Research Notices, 2013: 718352. https://doi.org/10.5402/2013/718352
  • 53. Stathopoulou, P.M., Savvides, A.L., Karagouni, A.D. & Hatzinikolaou, D.G. 2013. Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment. BioMed Research International, 2013: 703130. https://doi.org/10.1155/2013/703130
  • 54. Subramoni, S., Suárez-Moreno, Z. & Venturi, V. 2010. Lipases as pathogenicity factors of plant pathogens, pp. 3269-3277. In: Timmis, K.N (ed.). Handbook of Hydrocarbon and Lipid microbiology. Springer, Berlin, Heidelberg. DLII+4699 pp. https://doi.org/10.1007/978-3-540-77587-4_248
  • 55. Suci, M., Arbianti, R. & Hermansyah, H. 2018. Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. IOP Conference Series: Earth and Environmental Science. 105: 012126. https://doi.org/10.1088/1755-1315/105/1/012126
  • 56. Tamura, K., Nei, M. & Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy Sciences of the United States of America. 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  • 57. Trindade, L.C.D., Marques, E., Lopes, D.B. & Ferreira, M.Á.S.V. 2007. Development of a molecular method for detection and identification of Xanthomonas campestris pv. viticola. Summa Phytopathologica, 33: 16-23. https://doi.org/10.1590/S0100-54052007000100002
There are 57 citations in total.

Details

Primary Language English
Subjects Bioprocessing, Bioproduction and Bioproducts, Biocatalysis and Enzyme Technology
Journal Section Research Article/Araştırma Makalesi
Authors

Muinat Olanike Kazeem 0000-0001-7304-1872

Emmanuel Aduragbemi Adegbemi This is me 0009-0007-8933-0477

Abubakar Aısamı This is me 0000-0002-1158-1037

Ismail Babatunde Onajobı This is me 0000-0003-1234-0259

Early Pub Date February 21, 2024
Publication Date April 15, 2024
Submission Date June 20, 2023
Acceptance Date January 2, 2024
Published in Issue Year 2024

Cite

APA Kazeem, M. O., Adegbemi, E. A., Aısamı, A., Onajobı, I. B. (2024). Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters. Trakya University Journal of Natural Sciences, 25(1), 41-54. https://doi.org/10.23902/trkjnat.1317293
AMA Kazeem MO, Adegbemi EA, Aısamı A, Onajobı IB. Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters. Trakya Univ J Nat Sci. April 2024;25(1):41-54. doi:10.23902/trkjnat.1317293
Chicago Kazeem, Muinat Olanike, Emmanuel Aduragbemi Adegbemi, Abubakar Aısamı, and Ismail Babatunde Onajobı. “Utilization of Shea-Nut Cake for Lipase Production by Thermophilic Bacillus Velezensis EAC 9 Isolated from Hot Compost and Optimization of Nutritional Parameters”. Trakya University Journal of Natural Sciences 25, no. 1 (April 2024): 41-54. https://doi.org/10.23902/trkjnat.1317293.
EndNote Kazeem MO, Adegbemi EA, Aısamı A, Onajobı IB (April 1, 2024) Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters. Trakya University Journal of Natural Sciences 25 1 41–54.
IEEE M. O. Kazeem, E. A. Adegbemi, A. Aısamı, and I. B. Onajobı, “Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters”, Trakya Univ J Nat Sci, vol. 25, no. 1, pp. 41–54, 2024, doi: 10.23902/trkjnat.1317293.
ISNAD Kazeem, Muinat Olanike et al. “Utilization of Shea-Nut Cake for Lipase Production by Thermophilic Bacillus Velezensis EAC 9 Isolated from Hot Compost and Optimization of Nutritional Parameters”. Trakya University Journal of Natural Sciences 25/1 (April 2024), 41-54. https://doi.org/10.23902/trkjnat.1317293.
JAMA Kazeem MO, Adegbemi EA, Aısamı A, Onajobı IB. Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters. Trakya Univ J Nat Sci. 2024;25:41–54.
MLA Kazeem, Muinat Olanike et al. “Utilization of Shea-Nut Cake for Lipase Production by Thermophilic Bacillus Velezensis EAC 9 Isolated from Hot Compost and Optimization of Nutritional Parameters”. Trakya University Journal of Natural Sciences, vol. 25, no. 1, 2024, pp. 41-54, doi:10.23902/trkjnat.1317293.
Vancouver Kazeem MO, Adegbemi EA, Aısamı A, Onajobı IB. Utilization of shea-nut cake for lipase production by thermophilic Bacillus velezensis EAC 9 isolated from hot compost and optimization of nutritional parameters. Trakya Univ J Nat Sci. 2024;25(1):41-54.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.