Determination of plant growth promoting properties and bioremediation potentials of Bacillus mycoides Flügge and B. thuringiensis Berliner
Year 2024,
, 21 - 28, 15.04.2024
Ülkü Zeynep Üreyen Esertaş
,
Arif Bozdeveci
,
Emel Uzunalioğlu
,
Şengül Alpay Karaoğlu
Abstract
Industrial activities destroying natural resources for decades have been one of the most significant factors in environmental destruction. As a result of industrialization, environmental pollutants became one of the biggest threats for the biosphere. Heavy metals, one of these environmental pollutants, have become a significant health threat for organisms by forming metal accumulations in water and soil. In addition to the existing ones, most researchers believe that there is a great need for alternative biological processes to be used in the control of heavy metal pollution. Bioremediation is the process of removing various toxic pollutants, such as heavy metals from the environment, especially with the help of fungal and bacterial microorganisms, sometimes plants and earthworms. The use of bacteria in the bioremediation process is prevalent. In this study, the metal tolerance and plant growth-promoting properties of Bacillus mycoides and Bacillus thuringiensis isolated from the root soil of and orchid plant were investigated. The abilities of both bacteria to tolerate copper, lead, iron, silver, and zinc were tested in addition to and their indole acetic acid production (IAA), siderophore production, phosphate solubility and Aminocyclopropane-1-Carboxylate-deaminase (ACC-deaminase) activity were determined. The two isolates exhibited a high level of tolerance towards different pH levels, temperature ranges and metal concentrations. The results showed that B. mycoides and B. thuringiensis isolates can be used as bioremidant agents in metal-contaminated soils and also as biological fertilizers due to their plant growth-promoting properties.
Ethical Statement
Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.
References
- 1. Ahmad, F., Ahmad, I. & Khan, M. 2008. Screening of Free-Living Rhizospheric Bacteria for Their Multiple Plant Growth Promoting Activities. Microbiological Research, 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
- 2. Alexander, D.B. & Zuberer D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12: 39-45. https://doi.org/10.1007/BF00369386
- 3. Allievi, M.C., Sabbione F., Prado-Acosta, M., Palomino, M.M., Ruzal, S.M. & Sanchez-Rivas, C. 2011. Metal Biosorption by Surface-Layer Proteins from Bacillus Species. Journal of Microbioogy Biotechnology, 21(2): 147-153. https://doi.org/10.4014/jmb.1009.09046
- 4. Aydoğan, M.N., Algur, Ö.M. & Özdemir M. 2013. Isolation and characterisation of some bacteria and microfungus solving tricalcium phosphate. Adyutayam, 1: 11-20.
- 5. Chen, X., Liu, X., Zhang, X., Cao, L. & Hu, X. 2017. Phytoremediation effect of Scirpus triqueter inoculated plant growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Journal of Hazardous Materials, 325: 319-326. https://doi.org/10.1016/j. jhazmat.2016.12.009
- 6. Dupuy, L.X., Mimault, M., Patko, D., Ladmiral, V., Ameduri, B., MacDonald, M.P. & Ptashnyk, M. 2018. Micromechanics of Root Development in Soil. Current Opinion in Genetics & Development, 51: 18-25. https://doi.org/10.1016/j.gde.2018.03.007
- 7. Dworken, M. & Foster J. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75: 592-601. https://doi.org/10.1128/jb.75.5.592-603.1958
- 8. Ejaz, M., Zhao, B., Wang, X., Bashir, S., Haider, F.U., Aslam, Z., Khan, M.I., Shabaan, M., Naveed, M. & Mustafa, A. 2021. Isolation and characterization of oil degrading Enterobacter sp. from naturally hydrocarbon contaminated soils and their potential against bioremediation of crude oil. Applied Science, 11: 3504. https://doi.org/10.3390/app11083504
- 9. Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. 2018. Biological control of plant pathogens by Bacillus species, Journal of Biotechnology, 10(285): 44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
- 10. Fürnkranz, M., Müller, H. & Berg, G. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. Journal of Plant Diseases and Protection, 116(4): 149-155. https://doi.org/10.1007/BF03356303
- 11. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J. & He, Y. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101: 22, 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085
- 12. Haider, F.U., Liqun, C., Coulter, J.A., Alam Cheema, S., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211: 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
- 13. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T. & Williams, S.T. 1994. Bergey's Manual of Determinative Bacteriology (9th ed.), Baltimor: Williams & Wilkins, Co. ISBN-13: 978-0683006032
- 14. Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W. & Sessitsch, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70(5): 2667-2677. https://doi.org/10.1128/AEM.70.5.2667-2677.2004
- 15. Jin, Y., Luan, Y., Ning, Y. & Wang, L. 2018. Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Applied Science, 8: 1336-1353. https://doi.org/10.3390/app8081336
- 16. Kalaycı, A.K, Fakıoğlu, Ö., Kotan, R. Atamanalp, M. & Alak, G. 2021. The investigation of bioremediation potential of Bacillus subtilis and B. thuringiensis isolates under controlled conditions in freshwater. Archives of Microbiology, 203: 2075-2085. https://doi.org/10.1007/s00203-021-02187-9
- 17. Kandler, O. & Weiss, N. 1986. Genus Lactobacillus Beijerinck 1901, 212AL. pp. 1209-1234. In: Sneath, H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G. (eds). Baltimore Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore. vol. 2.
- 18. Khan, M., Kamran, M., Kadi, R. H., Hassan, M. M., Elhakem, A., Sakit ALHaithloul, H. A., Soliman, M. H., Mumtaz, M. Z., Ashraf, M. & Shamim, S. 2022. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Frontiers in Microbiology, 13: 878000. https://doi.org/10.3389/fmicb.2022.878000
- 19. Ma, Y., Prasad, M., Rajkumar, M. & Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248-258. https://doi.org/10.1016/j.biotechadv.2010.12.001
- 20. Mladenović, G.K., Muruzović, Ž.M., Žugić-Petrović, D.T. & Čomić, R.L. 2018. The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujevac Journal of Science, 40: 205-216. https://doi.org/10.5937/KgJSci1840205M
- 21. NCCLS, National Committee for Clinical Laboratory Standard. 1999. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. NCCLS Willanova PA, M26-A, 19 (18).
- 22. Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J. & Tsang, D.C. 2020. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. The Science of Total Environment, 707:136080. https://doi.org/10.1016/j.scito tenv.2019.136080
- 23. Ongena, M. & Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3): 115-125. https://doi.org/10.1016/j.tim.2007.12.009
- 24. Oves, M., Khan, M.S. & Zaidi, A. 2013. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20(2):121-129. https://doi.org/10.1016/j.sjbs.2012.11.006
- 25. Pandian, K., Thatheyus, A.J. & Ramya, D. 2014. Bioremoval of chromium, nickel and zinc in electroplating effluent by Pseudomonas aeruginosa. Open Journal of Water Pollutıon and Treatment 1: 75-82.
- 26. Phulpoto, A.H., Maitlo, M.A. & Kanhar, N.A. 2021. Culture dependent to culture independent approaches for the bioremediation of paints: A review. International Journal of Environmental Science and Technology, 18: 241-262. https://doi.org/10.1007/s13762-020-02801-1
- 27. Qi1, J., Aiuchi, D., Tani, M., Asano, H. & Koike, M. 2016. Potential of Entomopathogenic Bacillus thuringiensis as Plant Growth Promoting Rhizobacteria and Biological Control Agents for Tomato Fusarium Wilt. International Journal of Environmental & Agriculture Research, 2: 6.
- 28. Rajkumar, M., Sandhya, S., Prasad, M. N. & Freitas, H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30: 1562-1574. https://doi.org/10.1016/j.biotechadv.2012.04.011
- 29. Rama Jyothi, N. 2021. Heavy Metals-Their Environmental Impacts and Mitigation, Mazen Nazal (Editor) “Heavy Metal Sources and Their Effects on Human Health (2nd Chapter)”, ISBN 978-1-83968-122-6, IntechOpen. http://dx.doi.org/10.5772/intechopen.95370
- 30. Sánchez-Clemente, R., Guijo, M.I., Nogales, J. & Blasco, R. 2020. Carbon source influence on extracellular pH changes along bacterial cell-growth. Genes, 11: 1292-1309. http://doi.org/10.3390/genes11111292
- 31. Shao, W., Li, M., Teng, Z., Qiu, B., Huo, Y. & Zhang, K. 2019. Effects of Pb (II) and Cr (VI) stress on phosphate-solubilizing bacteria (Bacillus sp. strain MRP-3): Oxidative stress and bioaccumulation potential. International Journal of Environmental Research and Public Health, 16: 2172. https://doi.org/10.3390/ijerph16122172
- 32. Ullah, A., Heng, S., Munis, M.F.H., Fahad, S. & Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28-40. https://doi.org/10.1016/j.envexpbot.2015.05.001
- 33. Velásquez, L. & Dussan J. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167: 713-716. https://doi.org/10.1016/j.jhazmat.2009.01.044
- 34. Vural, A., Demir, S. & Boyno G. 2018. Biyoremediasyon ve fungusların biyoremediasyonda kullanılması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(4): 490-501. https://doi.org/10.29133/yyutb d.418430
- 35. Wróbel, M., Sliwakowski, W., Kowalczyk, P., Kramkowski, K. & Dobrzy´nski, J. 2023. Bioremediation of Heavy Metals by the Genus Bacillus. International Journal of Environmental Research and Public Health, 20, 4964. https://doi.org/10.3390/ijerph20064964
- 36. Zornoza, R., Gómez-Garrido, M., Martínez-Martínez, S., Gómez-López, M. D. & Faz, Á. 2017. Bioaugmentaton in Technosols created in abandoned pyritic tailings can contribute to enhance soil C sequestration and plant colonization. Science of The Total Environment, 593: 357- 367. http://doi.org/10.1016/j. scitotenv.2017.03.154
Year 2024,
, 21 - 28, 15.04.2024
Ülkü Zeynep Üreyen Esertaş
,
Arif Bozdeveci
,
Emel Uzunalioğlu
,
Şengül Alpay Karaoğlu
Abstract
Endüstriyel faaliyetler, onlarca yıldır doğal kaynakları yok eden çevresel tahribatın en önemli faktörlerinden biri olmuştur. Sanayileşmenin bir sonucu olarak, çevre kirleticileri biyosfer için en büyük tehditlerden biridir. Çevre kirleticilerinden biri olan ağır metaller, su ve toprakta metal birikimleri oluşturarak canlılar için önemli bir sağlık tehdidi haline gelmiştir. Bu nedenle ağır metal kirliliği ile mücadelede alternatif biyolojik süreçlere büyük ihtiyaç duyulmaktadır. Biyoremediasyon, ağır metal gibi çeşitli toksik kirleticilerin özellikle fungal ve bakteriyel mikroorganizmalar, bazen bitkiler ve toprak solucanları yardımıyla ortamdan uzaklaştırılması işlemidir. Biyoremediasyon sürecinde bakterilerin kullanımı yaygındır. Bu çalışmada, orkide kök toprağından izole edilen Bacillus mycoides ve Bacillus thuringiensis'in metal toleransı ve bitki büyümesini destekleyici özellikleri araştırıldı. Spesifik olarak, bakır, kurşun, demir, gümüş ve çinko metallerini tolere etme yetenekleri ve indol asetik asit üretimi, siderofor üretimi, fosfat çözünürlüğü ve 1-Aminosiklopropan-1-karboksilat-deaminaz (ACC-deaminaz) aktivitesi belirlendi. İki izolatın farklı pH seviyelerine, sıcaklık aralıklarına ve metal konsantrasyonlarına karşı yüksek düzeyde tolerans gösterdiği bulundu. Sonuçlar, B. mycoides ve B. thuringiensis izolatlarının metalle kontamine topraklarda biyoremidant ajanlar olarak ve ayrıca bitki gelişimlerini teşvik edici özellikleri nedeniyle biyolojik gübre olarak da kullanılabileceğini göstermiştir.
References
- 1. Ahmad, F., Ahmad, I. & Khan, M. 2008. Screening of Free-Living Rhizospheric Bacteria for Their Multiple Plant Growth Promoting Activities. Microbiological Research, 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
- 2. Alexander, D.B. & Zuberer D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12: 39-45. https://doi.org/10.1007/BF00369386
- 3. Allievi, M.C., Sabbione F., Prado-Acosta, M., Palomino, M.M., Ruzal, S.M. & Sanchez-Rivas, C. 2011. Metal Biosorption by Surface-Layer Proteins from Bacillus Species. Journal of Microbioogy Biotechnology, 21(2): 147-153. https://doi.org/10.4014/jmb.1009.09046
- 4. Aydoğan, M.N., Algur, Ö.M. & Özdemir M. 2013. Isolation and characterisation of some bacteria and microfungus solving tricalcium phosphate. Adyutayam, 1: 11-20.
- 5. Chen, X., Liu, X., Zhang, X., Cao, L. & Hu, X. 2017. Phytoremediation effect of Scirpus triqueter inoculated plant growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Journal of Hazardous Materials, 325: 319-326. https://doi.org/10.1016/j. jhazmat.2016.12.009
- 6. Dupuy, L.X., Mimault, M., Patko, D., Ladmiral, V., Ameduri, B., MacDonald, M.P. & Ptashnyk, M. 2018. Micromechanics of Root Development in Soil. Current Opinion in Genetics & Development, 51: 18-25. https://doi.org/10.1016/j.gde.2018.03.007
- 7. Dworken, M. & Foster J. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75: 592-601. https://doi.org/10.1128/jb.75.5.592-603.1958
- 8. Ejaz, M., Zhao, B., Wang, X., Bashir, S., Haider, F.U., Aslam, Z., Khan, M.I., Shabaan, M., Naveed, M. & Mustafa, A. 2021. Isolation and characterization of oil degrading Enterobacter sp. from naturally hydrocarbon contaminated soils and their potential against bioremediation of crude oil. Applied Science, 11: 3504. https://doi.org/10.3390/app11083504
- 9. Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. 2018. Biological control of plant pathogens by Bacillus species, Journal of Biotechnology, 10(285): 44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
- 10. Fürnkranz, M., Müller, H. & Berg, G. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. Journal of Plant Diseases and Protection, 116(4): 149-155. https://doi.org/10.1007/BF03356303
- 11. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J. & He, Y. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101: 22, 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085
- 12. Haider, F.U., Liqun, C., Coulter, J.A., Alam Cheema, S., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211: 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
- 13. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T. & Williams, S.T. 1994. Bergey's Manual of Determinative Bacteriology (9th ed.), Baltimor: Williams & Wilkins, Co. ISBN-13: 978-0683006032
- 14. Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W. & Sessitsch, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70(5): 2667-2677. https://doi.org/10.1128/AEM.70.5.2667-2677.2004
- 15. Jin, Y., Luan, Y., Ning, Y. & Wang, L. 2018. Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Applied Science, 8: 1336-1353. https://doi.org/10.3390/app8081336
- 16. Kalaycı, A.K, Fakıoğlu, Ö., Kotan, R. Atamanalp, M. & Alak, G. 2021. The investigation of bioremediation potential of Bacillus subtilis and B. thuringiensis isolates under controlled conditions in freshwater. Archives of Microbiology, 203: 2075-2085. https://doi.org/10.1007/s00203-021-02187-9
- 17. Kandler, O. & Weiss, N. 1986. Genus Lactobacillus Beijerinck 1901, 212AL. pp. 1209-1234. In: Sneath, H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G. (eds). Baltimore Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore. vol. 2.
- 18. Khan, M., Kamran, M., Kadi, R. H., Hassan, M. M., Elhakem, A., Sakit ALHaithloul, H. A., Soliman, M. H., Mumtaz, M. Z., Ashraf, M. & Shamim, S. 2022. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Frontiers in Microbiology, 13: 878000. https://doi.org/10.3389/fmicb.2022.878000
- 19. Ma, Y., Prasad, M., Rajkumar, M. & Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248-258. https://doi.org/10.1016/j.biotechadv.2010.12.001
- 20. Mladenović, G.K., Muruzović, Ž.M., Žugić-Petrović, D.T. & Čomić, R.L. 2018. The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujevac Journal of Science, 40: 205-216. https://doi.org/10.5937/KgJSci1840205M
- 21. NCCLS, National Committee for Clinical Laboratory Standard. 1999. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. NCCLS Willanova PA, M26-A, 19 (18).
- 22. Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J. & Tsang, D.C. 2020. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. The Science of Total Environment, 707:136080. https://doi.org/10.1016/j.scito tenv.2019.136080
- 23. Ongena, M. & Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3): 115-125. https://doi.org/10.1016/j.tim.2007.12.009
- 24. Oves, M., Khan, M.S. & Zaidi, A. 2013. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20(2):121-129. https://doi.org/10.1016/j.sjbs.2012.11.006
- 25. Pandian, K., Thatheyus, A.J. & Ramya, D. 2014. Bioremoval of chromium, nickel and zinc in electroplating effluent by Pseudomonas aeruginosa. Open Journal of Water Pollutıon and Treatment 1: 75-82.
- 26. Phulpoto, A.H., Maitlo, M.A. & Kanhar, N.A. 2021. Culture dependent to culture independent approaches for the bioremediation of paints: A review. International Journal of Environmental Science and Technology, 18: 241-262. https://doi.org/10.1007/s13762-020-02801-1
- 27. Qi1, J., Aiuchi, D., Tani, M., Asano, H. & Koike, M. 2016. Potential of Entomopathogenic Bacillus thuringiensis as Plant Growth Promoting Rhizobacteria and Biological Control Agents for Tomato Fusarium Wilt. International Journal of Environmental & Agriculture Research, 2: 6.
- 28. Rajkumar, M., Sandhya, S., Prasad, M. N. & Freitas, H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30: 1562-1574. https://doi.org/10.1016/j.biotechadv.2012.04.011
- 29. Rama Jyothi, N. 2021. Heavy Metals-Their Environmental Impacts and Mitigation, Mazen Nazal (Editor) “Heavy Metal Sources and Their Effects on Human Health (2nd Chapter)”, ISBN 978-1-83968-122-6, IntechOpen. http://dx.doi.org/10.5772/intechopen.95370
- 30. Sánchez-Clemente, R., Guijo, M.I., Nogales, J. & Blasco, R. 2020. Carbon source influence on extracellular pH changes along bacterial cell-growth. Genes, 11: 1292-1309. http://doi.org/10.3390/genes11111292
- 31. Shao, W., Li, M., Teng, Z., Qiu, B., Huo, Y. & Zhang, K. 2019. Effects of Pb (II) and Cr (VI) stress on phosphate-solubilizing bacteria (Bacillus sp. strain MRP-3): Oxidative stress and bioaccumulation potential. International Journal of Environmental Research and Public Health, 16: 2172. https://doi.org/10.3390/ijerph16122172
- 32. Ullah, A., Heng, S., Munis, M.F.H., Fahad, S. & Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28-40. https://doi.org/10.1016/j.envexpbot.2015.05.001
- 33. Velásquez, L. & Dussan J. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167: 713-716. https://doi.org/10.1016/j.jhazmat.2009.01.044
- 34. Vural, A., Demir, S. & Boyno G. 2018. Biyoremediasyon ve fungusların biyoremediasyonda kullanılması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(4): 490-501. https://doi.org/10.29133/yyutb d.418430
- 35. Wróbel, M., Sliwakowski, W., Kowalczyk, P., Kramkowski, K. & Dobrzy´nski, J. 2023. Bioremediation of Heavy Metals by the Genus Bacillus. International Journal of Environmental Research and Public Health, 20, 4964. https://doi.org/10.3390/ijerph20064964
- 36. Zornoza, R., Gómez-Garrido, M., Martínez-Martínez, S., Gómez-López, M. D. & Faz, Á. 2017. Bioaugmentaton in Technosols created in abandoned pyritic tailings can contribute to enhance soil C sequestration and plant colonization. Science of The Total Environment, 593: 357- 367. http://doi.org/10.1016/j. scitotenv.2017.03.154