Review
BibTex RIS Cite

VALIDATION OF MICROBIOLOGICAL TESTING METHODS

Year 2017, Volume: 18 Issue: 1, 65 - 69, 17.04.2017
https://doi.org/10.23902/trkjnat.271725

Abstract

 Method-validation is a method which proofs that a
given analytical process, when applied well, produces findings which are
suitable for a purpose and of acceptable standard. A process whereby an
authentic information is given on an analytical method duly applied and enough
to meet the needs and acceptable standards, is known as method-validation. The
goal to validate a method therefore, is to make the findings of the
method-validation reliable throughout the course of the study. With the above
in mind, validating a method therefore, is for the purpose of making the
obtained results reliable in the study. A laboratory should authenticate
non-standard methods and laboratory-designed/developed methods. Validation
studies should also be done when new equipment steps into the work or an
important change occurs along the new chemicals. The method is carried out by a
new personnel. A validation method that has not been used for a long time,
demanded to be used during a study, is thought to affect the laboratory
results. Laboratories need to make a policy and procedures for the selection
and the use of analytical methods. The method will successfully meet or exceed
the minimum standards recommended for accuracy, precision, selectivity,
sensitivity, reproducibility, and stability
.

References

  • 1. AOAC, 2006. Presidential Task Force on Best Practice for Microbiological Methodology, US FDA, Appendix G-STWG Executive Summary 7-16-06 7-16-06: 1-5.
  • 2. CDER (U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research Center for Veterinary Medicine (CVM)), 2015. Guidance for Industry Bioanalytical Method Validation. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm386366.pdf, (Date accessed: 15 June 2016).
  • 3. COFRAC (French Committee for Accreditation), 2004. Guidelines for Method Validation in Medical Biology, Document LAB GTA (04), https://www.cofrac.fr/en/activites/laboratoires.php, (Date accessed: 12 June 2016).
  • 4. EA (European co-operation for Accreditation), 2012. The Scope of Accreditation and Consideration of Methods and Criteria for the Assessment of the Scope in Testing, EA-2/05, Publication Reference, 13 pp.
  • 5. Elder, B.L., Hansen, S.A., Kellogg, J.A., 1997. CUMITECH 31: verification and validation of procedures in the clinical microbiology laboratory. Washington DC: American Society for Microbiology.
  • 6. Eurachem, 2013. Accreditation for Microbiological Laboratories, Eurachem Guide, 32 pp.
  • 7. Eurachem, 2014. The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, Eurachem Guide, 70 pp.
  • 8. FAO, Joint FAO/IAEA Expert Consultation, 1999. Guidelines for Single-laboratory validation of analytical methods for trace-level concentrations of organic chemicals.
  • 9. FAO, Joint FAO/WHO, 2001. Proposed guidelines and working instructions to aid the implementation of the criteria approach to the selection of methods of analysis for codex purposes, Food Standard Programme, Report on the twenty-third session of the Codex Committee on the methods of analysis and sampling, Alinorm 01/23.
  • 10. Garfield, F., Klesta, E. & Hirsch, J. 2000. Quality Assurance Principles for Analytical Laboratories. AOAC International, Third Edition, USA, 113-129.
  • 11. Golcteger, S. 2001. Microbiological examination and proficiency testing in dairy laboratories. Archives of Industrial Hygiene and Toxicology, (52): 61-67.
  • 12. Green, M. 1996. A Practical Guide to Analytical Method Validation. Analytical Chemistry, (68): 305A-309A.
  • 13. ISO 16140:2003. Microbiology of food and animal feeding stuffs – Protocol for the validation of alternative methods, http://www.iso.org/iso/catalogue_detail.htm?csnumber=30158, (Date accessed: 12 June 2016).
  • 14. ISO/IEC 17025:2005. General requirements for the competence of testing and calibration laboratories, http://www.iso.org/iso/catalogue_detail.htm?csnumber=39883, (Date accessed: 15 June 2016).
  • 15. ISO 7218:2007. Microbiology of food and animal feeding stuffs - General requirements and guidance for microbiological examinations, http://www.iso.org/iso/home, (Date accessed: 15 June 2016).Kromidas, S. 2000. Handbook of validation in analysis. Verlag Wiley-VCH, Weinheim, ISBN 3-527-29811-8.
  • 16. Kromidas, S., 2000. Handbook of validation in analysis, Verlag Wiley-VCH, Weinheim, ISBN 3-527-29811-8.
  • 17. MAF (Food Assurance Authority), 2002. A guide for the validation and approval of new marine biotoxin test methods, Shellfish Quality Assurance Programme, A Guide to the Validation of New Test Methods, Seafood Industry Agreed Guidelines Issue 1: P2. Wellington, 1-22.
  • 18. McCully, K.A. & Lee, J.G. 1980. Optimizing Chemical Laboratory Performance Through the Application of Quality Assurance Principle, Association of Official Analytical Chemists, Arlington, VA, 73 pp.
  • 19. NELAC, 2007. Microbiological Testing, Draft Interim Standard, Vol 1, Module 5, www.nelac-institute.org, (Date accessed: 12 June 2016).
  • 20. Nolard, N. & Chasseur, C. 2004. Validation of microbiological and chemical inspections for the workplaces, Programmes PS 50/47 and PS/50/48: final report, 1-93.
  • 21. NordVal, 2009. Food microbiology protocol for the validation of alternative methods, http://www.nmkl.org/dokumenter/nordval/NordValProtocol.pdf, (Date accessed: 15 June 2016).PDA, 2000. Evaluation, Validation and Implementation of New Microbiological Testing Methods, Technical Report No. 33, PDA Journal of Pharmaceutical Science and Technology, Supplement TR33, 54 (3).
  • 22. PDA, 2000. Evaluation, Validation and Implementation of New Microbiological Testing Methods, Technical Report No. 33, PDA Journal of Pharmaceutical Science and Technology, Supplement TR33, 54 (3).
  • 23. Riley, B.S. 2003. Rapid microbiology methods in the pharmaceutical industry, American Pharmaceutical Review, The Review of American Pharmaceutical Business and Technology, http://www.americanpharmaceuticalreview.com/Featured-Articles/113094-Rapid-Microbiology-Methods-in-the-Pharmaceutical-Industry/, (Date accessed: 22 November 2016).
  • 24. Sartory, D.P. 2005. Validation, verification and comparison: Adopting new methods in water microbiology. Water SA, 31 (3): 393-396.
  • 25. Thompson, M., Ellison, S.L.R. & Wood, R. 2002. Harmonised guidelines for single-laboratory validation of methods of analysis. Pure and Applied Chemistry, (74): 835-855.
  • 26. USPC Inc., 2003. Microbial limits tests. USP 26, Rockville, MD, 2006 pp.
  • 27. White, V.R., Alderman, D.F. & Fasion, C.D. 2001. Procedures and General Requirements, National Voluntary Laboratory Accreditation Program Office of Standards Services Technology Services, NIST Handbook 150, 60p.
  • 28. Wills, K., 2000. Evaluation, Validation of Implementation of New Microbiological Testing Methods, A Brief Review of the Highlight of PDA Technical Report No.33, Celsis Ltd, UK.

MİKROBİYOLOJİK TEST METOTLARININ DOĞRULANMASI (VALİDASYONU)

Year 2017, Volume: 18 Issue: 1, 65 - 69, 17.04.2017
https://doi.org/10.23902/trkjnat.271725

Abstract

Metot
doğrulanması, amaca en uygun ve kabul edilebilir nitelikte sonuçları üretecek
analitik metodun ortaya çıkarılması sürecidir. Doğrulanmış metodun hedefi bu
metotla yapılmış sonuçlara güvenirlik sağlamaktadır. Laboratuvar, standart
olmayan metotları, laboratuvar tarafından geliştirilen veya tasarlanan
metotları geçerli kılmalıdır. Doğrulama çalışmaları yeni bir cihaz devreye girdiğinde
ya da yeni kimyasallarda önemli bir değişiklik olduğunda da yapılmalıdır.
Yöntem yeni bir personel tarafından uygulanır. Uzun süredir kullanılmayan ancak
kullanılmasına gereksinim duyulan bir doğrulama yönteminin laboratuvar
sonuçlarını etkilediği düşünülür. Laboratuvarların, analitik metotların seçimi
ve kullanımı için bir yöntem ve prosedür belirlemeleri gereklidir. Metot,
kesinlik, doğruluk, seçicilik, hassasiyet, tekrar edilebilirlik ve kararlılık
için gerekli minimum standartları başarılı bir biçimde karşılamalı ya da
aşmalıdır.

References

  • 1. AOAC, 2006. Presidential Task Force on Best Practice for Microbiological Methodology, US FDA, Appendix G-STWG Executive Summary 7-16-06 7-16-06: 1-5.
  • 2. CDER (U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research Center for Veterinary Medicine (CVM)), 2015. Guidance for Industry Bioanalytical Method Validation. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm386366.pdf, (Date accessed: 15 June 2016).
  • 3. COFRAC (French Committee for Accreditation), 2004. Guidelines for Method Validation in Medical Biology, Document LAB GTA (04), https://www.cofrac.fr/en/activites/laboratoires.php, (Date accessed: 12 June 2016).
  • 4. EA (European co-operation for Accreditation), 2012. The Scope of Accreditation and Consideration of Methods and Criteria for the Assessment of the Scope in Testing, EA-2/05, Publication Reference, 13 pp.
  • 5. Elder, B.L., Hansen, S.A., Kellogg, J.A., 1997. CUMITECH 31: verification and validation of procedures in the clinical microbiology laboratory. Washington DC: American Society for Microbiology.
  • 6. Eurachem, 2013. Accreditation for Microbiological Laboratories, Eurachem Guide, 32 pp.
  • 7. Eurachem, 2014. The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, Eurachem Guide, 70 pp.
  • 8. FAO, Joint FAO/IAEA Expert Consultation, 1999. Guidelines for Single-laboratory validation of analytical methods for trace-level concentrations of organic chemicals.
  • 9. FAO, Joint FAO/WHO, 2001. Proposed guidelines and working instructions to aid the implementation of the criteria approach to the selection of methods of analysis for codex purposes, Food Standard Programme, Report on the twenty-third session of the Codex Committee on the methods of analysis and sampling, Alinorm 01/23.
  • 10. Garfield, F., Klesta, E. & Hirsch, J. 2000. Quality Assurance Principles for Analytical Laboratories. AOAC International, Third Edition, USA, 113-129.
  • 11. Golcteger, S. 2001. Microbiological examination and proficiency testing in dairy laboratories. Archives of Industrial Hygiene and Toxicology, (52): 61-67.
  • 12. Green, M. 1996. A Practical Guide to Analytical Method Validation. Analytical Chemistry, (68): 305A-309A.
  • 13. ISO 16140:2003. Microbiology of food and animal feeding stuffs – Protocol for the validation of alternative methods, http://www.iso.org/iso/catalogue_detail.htm?csnumber=30158, (Date accessed: 12 June 2016).
  • 14. ISO/IEC 17025:2005. General requirements for the competence of testing and calibration laboratories, http://www.iso.org/iso/catalogue_detail.htm?csnumber=39883, (Date accessed: 15 June 2016).
  • 15. ISO 7218:2007. Microbiology of food and animal feeding stuffs - General requirements and guidance for microbiological examinations, http://www.iso.org/iso/home, (Date accessed: 15 June 2016).Kromidas, S. 2000. Handbook of validation in analysis. Verlag Wiley-VCH, Weinheim, ISBN 3-527-29811-8.
  • 16. Kromidas, S., 2000. Handbook of validation in analysis, Verlag Wiley-VCH, Weinheim, ISBN 3-527-29811-8.
  • 17. MAF (Food Assurance Authority), 2002. A guide for the validation and approval of new marine biotoxin test methods, Shellfish Quality Assurance Programme, A Guide to the Validation of New Test Methods, Seafood Industry Agreed Guidelines Issue 1: P2. Wellington, 1-22.
  • 18. McCully, K.A. & Lee, J.G. 1980. Optimizing Chemical Laboratory Performance Through the Application of Quality Assurance Principle, Association of Official Analytical Chemists, Arlington, VA, 73 pp.
  • 19. NELAC, 2007. Microbiological Testing, Draft Interim Standard, Vol 1, Module 5, www.nelac-institute.org, (Date accessed: 12 June 2016).
  • 20. Nolard, N. & Chasseur, C. 2004. Validation of microbiological and chemical inspections for the workplaces, Programmes PS 50/47 and PS/50/48: final report, 1-93.
  • 21. NordVal, 2009. Food microbiology protocol for the validation of alternative methods, http://www.nmkl.org/dokumenter/nordval/NordValProtocol.pdf, (Date accessed: 15 June 2016).PDA, 2000. Evaluation, Validation and Implementation of New Microbiological Testing Methods, Technical Report No. 33, PDA Journal of Pharmaceutical Science and Technology, Supplement TR33, 54 (3).
  • 22. PDA, 2000. Evaluation, Validation and Implementation of New Microbiological Testing Methods, Technical Report No. 33, PDA Journal of Pharmaceutical Science and Technology, Supplement TR33, 54 (3).
  • 23. Riley, B.S. 2003. Rapid microbiology methods in the pharmaceutical industry, American Pharmaceutical Review, The Review of American Pharmaceutical Business and Technology, http://www.americanpharmaceuticalreview.com/Featured-Articles/113094-Rapid-Microbiology-Methods-in-the-Pharmaceutical-Industry/, (Date accessed: 22 November 2016).
  • 24. Sartory, D.P. 2005. Validation, verification and comparison: Adopting new methods in water microbiology. Water SA, 31 (3): 393-396.
  • 25. Thompson, M., Ellison, S.L.R. & Wood, R. 2002. Harmonised guidelines for single-laboratory validation of methods of analysis. Pure and Applied Chemistry, (74): 835-855.
  • 26. USPC Inc., 2003. Microbial limits tests. USP 26, Rockville, MD, 2006 pp.
  • 27. White, V.R., Alderman, D.F. & Fasion, C.D. 2001. Procedures and General Requirements, National Voluntary Laboratory Accreditation Program Office of Standards Services Technology Services, NIST Handbook 150, 60p.
  • 28. Wills, K., 2000. Evaluation, Validation of Implementation of New Microbiological Testing Methods, A Brief Review of the Highlight of PDA Technical Report No.33, Celsis Ltd, UK.
There are 28 citations in total.

Details

Journal Section Review/Derleme
Authors

Dilek Duygu This is me

Abel Udoh

Publication Date April 17, 2017
Submission Date December 3, 2016
Acceptance Date March 20, 2017
Published in Issue Year 2017 Volume: 18 Issue: 1

Cite

APA Duygu, D., & Udoh, A. (2017). VALIDATION OF MICROBIOLOGICAL TESTING METHODS. Trakya University Journal of Natural Sciences, 18(1), 65-69. https://doi.org/10.23902/trkjnat.271725
AMA Duygu D, Udoh A. VALIDATION OF MICROBIOLOGICAL TESTING METHODS. Trakya Univ J Nat Sci. June 2017;18(1):65-69. doi:10.23902/trkjnat.271725
Chicago Duygu, Dilek, and Abel Udoh. “VALIDATION OF MICROBIOLOGICAL TESTING METHODS”. Trakya University Journal of Natural Sciences 18, no. 1 (June 2017): 65-69. https://doi.org/10.23902/trkjnat.271725.
EndNote Duygu D, Udoh A (June 1, 2017) VALIDATION OF MICROBIOLOGICAL TESTING METHODS. Trakya University Journal of Natural Sciences 18 1 65–69.
IEEE D. Duygu and A. Udoh, “VALIDATION OF MICROBIOLOGICAL TESTING METHODS”, Trakya Univ J Nat Sci, vol. 18, no. 1, pp. 65–69, 2017, doi: 10.23902/trkjnat.271725.
ISNAD Duygu, Dilek - Udoh, Abel. “VALIDATION OF MICROBIOLOGICAL TESTING METHODS”. Trakya University Journal of Natural Sciences 18/1 (June 2017), 65-69. https://doi.org/10.23902/trkjnat.271725.
JAMA Duygu D, Udoh A. VALIDATION OF MICROBIOLOGICAL TESTING METHODS. Trakya Univ J Nat Sci. 2017;18:65–69.
MLA Duygu, Dilek and Abel Udoh. “VALIDATION OF MICROBIOLOGICAL TESTING METHODS”. Trakya University Journal of Natural Sciences, vol. 18, no. 1, 2017, pp. 65-69, doi:10.23902/trkjnat.271725.
Vancouver Duygu D, Udoh A. VALIDATION OF MICROBIOLOGICAL TESTING METHODS. Trakya Univ J Nat Sci. 2017;18(1):65-9.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.