Research Article
BibTex RIS Cite

Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills

Year 2017, Volume: 18 Issue: 2, 143 - 148, 20.10.2017
https://doi.org/10.23902/trkjnat.294722

Abstract

The
aim of this study is to determine the potential of 2,4-D
(2,4-Dichlorophenoxyacetic acid) herbicide in causing acute oxidative stress in
the gills of zebrafish (
Danio rerio
Hamilton, 1822) using spectrophotometric methods. Test animals except the
control group (Group-K) were exposed to sublethal doses (0.1ppm, 0.5ppm and
1ppm) of 2,4-D herbicide for 96 hours. Malondialdehyde (MDA) was used to
determine lipid peroxidation levels, and reduced glutathione (GSH), catalase
enzyme activity (CAT) and total protein (TP) levels were determined to
determine their effects on antioxidant systems in gill tissues. In this study,
total protein levels in gills of zebrafish exposed to sublethal doses of 2,4-D
were observed to be reduced compared to the control group. MDA levels
significantly increased compared to the control group. GSH levels increased in
the highest dose of 2,4-D herbicide but decreased in other doses. No
significant difference was found in CAT activity compared to the control group.

References

  • 1. Adeyemi, J.A., Martins-Junior, A.C. & Barbosa, J.F. 2015. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 7(12): 172-173.
  • 2. Aebi, H. 1974. Catalase invitro. In: Methods of enzymatic analysis, Ed: Bergmeyer HU, 2nd ed, FL pp:121-126.
  • 3. Beutler, E. 1975. Glutathione in red cell metabolism: A manual of biochemical methods. pp: 112-114, 2nd ed., Grune and Stratton, New York.
  • 4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • 5. Chinalia, F.A., Regali-Seleghin, M.H. & Correa, E.M. 2007. 2,4-D Toxicity: Cause, Effect and Control. Terrestrial and Aquatic Environmental Toxicology. Invited Review. Global Science Books. p: 24-33.
  • 6. Fernandes, M.N., Paulino, M.G., Sakuragui, M.M., Ramos, C.A. & Pereira, C.D. 2013. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: An integrative field study involving chemical, biochemical and morphological analyses. Aquatic Toxicology, 126: 180-190.
  • 7. Food and Agriculture Organization (FAO), 2016. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmpr-rep/en/ (Erişim: Mart 2017).
  • 8. Ge, T., Han, J., Qi, Y., Gu, X., Ma, L., Zhang, C., Naeem, S. & Huang, D. 2017.The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicology, 184: 78-93.
  • 9. Glusczak, L., Dos Santos Miron, D., Moraes, B.S., Simoes, R.R. & Schetinger, M.R. 2007. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comparative Biochemistry and Physiology, 146: 519-524.
  • 10. Golombieski, J.I., Sutili, F.J., Salbego, J., Seben, D., Gressler, L.T., Arruda da Cunha, J., Gressler, L.T., Zanella, R., Vaucher, R.A., Marchesan, E. & Baldisserotto, B. 2016. Imazapyr+imazapic herbicide determines acute toxicity in silver catfish Rhamdia quelen. Ecotoxicology and Environmental Safety, 128: 91-99.
  • 11. Husak, V.V., Mosiichuk, N.M., Maksymiv, I.V., Storey, J.M., Storey, K.B. & Lushchak. V.I. 2016. Oxidative stress responses in gills of goldfish, Carassius auratus, exposed to the metribuzin-containing herbicide Sencor. Environmental Toxicology and Pharmacology, 45: 163-169.
  • 12. Karasu Benli, A.C., Şahin, D., Koçak Memmi, B. & Sepici Dinçel, A. 2012. Karbaril’e maruz kalan tatlı su istakozlarında (Astacus leptodactylus Eschscholtz, 1823) antioksidan enzim düzeyleri. Türk Biyokimya Dergisi, 37(2): 162-166.
  • 13. Koç, N.D. & Akbulut, C. 2012. Histological analysis of acute toxicity of 2,4-diclorophenoxyacetic acid in ovary of zebrafish, Animal Cells and Systems, 16: 400-407.
  • 14. Ledwozyw, A., Michalak, D., Stepien, A. & Kadziolka, A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 155(3): 275-283. 15. Li, W., Yin, D., Zhou, Y. & Wang, L. 2003. 3,4-Dichloroaniline-induced oxidative stress in liver of Crucian carp (Carassius auratus). Ecotoxicology and Environmental Safety, 56: 251-255.
  • 16. Ling, L., Chia-W.L., Yung C., Lai, P.L. & Hsu T. 2017. Oxidative stress intensity-related effects of cadmium and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos. Chemosphere, 167: 10-18.
  • 17. Monteiro, D.A., De Almeida, J.A., Rantin, F.T. & Kalinin, A.L. 2006. Oxidative stress biomarkers in the freshwater characid fish Brycon cephalus exposed to organophosphorus insecticide folisuper 600 (Methyl parathion). Comparative Biochemistry and Physiology, 143: 141-149.
  • 18. Oliveira, J.M.M., Galhano, V., Henriques, I., Soares, A.M.V.M. & Loureiro, S. 2017. Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos. Environmental Pollution, 221: 52-63.
  • 19. Oruç, E.Ö., Sevgiler, Y. & Üner, N. 2004. Tissue-spesific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology, 137: 43-51.
  • 20. Özdaş, E., Ateş, U., Uyanıkgil, Y., Baka, M., Yavaşoğlu, A., Biçer, S., Ergen, G. 2006. Bir herbisit olan 2,4-D’nin sıçanlarda testis dokusu üzerine etkisi. Ege Tıp Dergisi, 45(3): 169-174.
  • 21. Özmen, I.A.M., Cengiz, M., Sirkecioğlu, N. & Atamanalp, M. 2004. Effect of water reduce system on antioxidant enzymes of rainbow trout (Oncorhynchus mykiss W., 1792). Veterinarni Medicina Czech, 49(10): 373-378.
  • 22. Parvez, S. & Raisuddin, S. 2006. Effects of paraquat on the freshwater fish Channa punctata (Bloch): Non-enzymatic antioxidants as biomarkers of exposure. Archives of Environmental Contamination and Toxicology, 50: 392-397.
  • 23. Persch, T.S.P., Weimer, R.N., Freitas, B.S. & Oliveira, G.T. 2017. Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere, 174: 98-109.
  • 24. Piancini, L.D.S., Guiloski, I.C., Silva de Assis, H.C. & Cestari, M.M. 2015. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species. Toxicology Reports, 2: 1157-1163.
  • 25. Sarıkaya, R. & Yılmaz, M. 2003. Investigation of acute toxicity and the effect of 2,4-D herbicide on the behaviour of the common carp (C. carpio L., 1758; Pisces, Cyprinidae). Chemosphere, 52: 195-201.
  • 26. Simonetti, R.B., Marques, L.S., Streit, D.P. & Oberst, E.R. 2015. Zebrafish (Danio rerio): The future of animal model in biomedical research. Journal of Fisheries Sciences. 9(3): 039-045.
  • 27. Stara, A., Machova, J. & Velisek, J. 2012. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp. Environmental Toxicology and Pharmacology. 33: 334-343.
  • 28. Tabassum, H., Ashafaq, M., Khan, J., Shah, Z., Raisuddin, S. & Parvez, S. 2016. Short term exposure of pendimethalin induces biochemical and histological perturbations in liver, kidney and gill of freshwater fish. Ecological Indicators, 63: 29-36. 29. Vasylkiv, O.Y., Kubrak, O.I., Storey, K.B. & Lushchak, V.I. 2011. Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pesticide Biochemistry and Physiology, 101: 1-5.
  • 30. Vigario, A.F., & Saboia-Morais, S.M.T. 2014. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara. Pesquisa Veterinaria Brasileira. 34(6): 523-528.
  • 31. World Health Organization (WHO). 2016. http://www.who.int/foodsafety/areas_work/chemical-risks/jmpr/en/ (Erişim: Mart 2017).
  • 32. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S. & Wang, X. 2012. Oxidative stress responce and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide Biochemistry and Physiology, 103: 74-80.
  • 33. Zhang, J.F., Liu, H., Sun, Y.Y., Wang, X.R.,, Wu, J.C. & Xue, Y.Q. 2005. Responses of the antioxidant defenses of the goldfish Carassius auratus, exposed to 2,4-Dichlorophenol. Environmental Toxicology and Pharmacology, 19: 185-190.

2,4-D (DİKLOROFENOKSİASETİK ASİT)’İN ZEBRA BALIĞI (Danio rerio) SOLUNGAÇLARINDA ANTİOKSİDAN ENZİMLER VE LİPİD PEROKSİDASYON SEVİYESİ ÜZERİNE AKUT ETKİLERİNİN BELİRLENMESİ

Year 2017, Volume: 18 Issue: 2, 143 - 148, 20.10.2017
https://doi.org/10.23902/trkjnat.294722

Abstract

Bu
çalışmanın amacı; 2-4-D (2,4-Diklorofenoksiasetik asit) herbisitinin, zebra
balığı (Danio rerio Hamilton, 1822)
solungaçlarında akut oksidatif strese neden olma potansiyellerinin
spektrofotometrik yöntemlerle belirlenmesidir. Kontrol grubu (Grup-K) dışındaki
balıklar, 96 saat süreyle 2-4-D herbisitinin subletal dozlarının (0.1, 0.5 ve 1
ppm) etkisine bırakılmıştır. Solungaç dokusunda lipid peroksidasyon
seviyelerinin belirlenmesi amacıyla malondialdehit (MDA), antioksidan
sistemlere etkisini belirlemek amacıyla da indirgenmiş glutatyon (GSH), katalaz
enzim aktivitesi (CAT) ve total protein (TP) seviyeleri spektrofotometrik
yöntemler kullanılarak belirlenmiştir. Bu çalışmada 2,4-D’nin subletal
dozlarına maruz bırakılan zebra balıklarının solungaçlarında total protein seviyelerinin
kontrol grubuna oranla azaldığı gözlenmiştir. MDA seviyeleri kontrol grubuna
oranla önemli ölçüde artmıştır. GSH seviyeleri 2-4-D herbisitinin en yüksek
dozunda artarken diğer gruplarda azalmıştır. CAT aktivitesinde ise kontrol
grubuna oranla önemli bir fark gözlenmemiştir.

References

  • 1. Adeyemi, J.A., Martins-Junior, A.C. & Barbosa, J.F. 2015. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 7(12): 172-173.
  • 2. Aebi, H. 1974. Catalase invitro. In: Methods of enzymatic analysis, Ed: Bergmeyer HU, 2nd ed, FL pp:121-126.
  • 3. Beutler, E. 1975. Glutathione in red cell metabolism: A manual of biochemical methods. pp: 112-114, 2nd ed., Grune and Stratton, New York.
  • 4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • 5. Chinalia, F.A., Regali-Seleghin, M.H. & Correa, E.M. 2007. 2,4-D Toxicity: Cause, Effect and Control. Terrestrial and Aquatic Environmental Toxicology. Invited Review. Global Science Books. p: 24-33.
  • 6. Fernandes, M.N., Paulino, M.G., Sakuragui, M.M., Ramos, C.A. & Pereira, C.D. 2013. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: An integrative field study involving chemical, biochemical and morphological analyses. Aquatic Toxicology, 126: 180-190.
  • 7. Food and Agriculture Organization (FAO), 2016. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmpr-rep/en/ (Erişim: Mart 2017).
  • 8. Ge, T., Han, J., Qi, Y., Gu, X., Ma, L., Zhang, C., Naeem, S. & Huang, D. 2017.The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicology, 184: 78-93.
  • 9. Glusczak, L., Dos Santos Miron, D., Moraes, B.S., Simoes, R.R. & Schetinger, M.R. 2007. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comparative Biochemistry and Physiology, 146: 519-524.
  • 10. Golombieski, J.I., Sutili, F.J., Salbego, J., Seben, D., Gressler, L.T., Arruda da Cunha, J., Gressler, L.T., Zanella, R., Vaucher, R.A., Marchesan, E. & Baldisserotto, B. 2016. Imazapyr+imazapic herbicide determines acute toxicity in silver catfish Rhamdia quelen. Ecotoxicology and Environmental Safety, 128: 91-99.
  • 11. Husak, V.V., Mosiichuk, N.M., Maksymiv, I.V., Storey, J.M., Storey, K.B. & Lushchak. V.I. 2016. Oxidative stress responses in gills of goldfish, Carassius auratus, exposed to the metribuzin-containing herbicide Sencor. Environmental Toxicology and Pharmacology, 45: 163-169.
  • 12. Karasu Benli, A.C., Şahin, D., Koçak Memmi, B. & Sepici Dinçel, A. 2012. Karbaril’e maruz kalan tatlı su istakozlarında (Astacus leptodactylus Eschscholtz, 1823) antioksidan enzim düzeyleri. Türk Biyokimya Dergisi, 37(2): 162-166.
  • 13. Koç, N.D. & Akbulut, C. 2012. Histological analysis of acute toxicity of 2,4-diclorophenoxyacetic acid in ovary of zebrafish, Animal Cells and Systems, 16: 400-407.
  • 14. Ledwozyw, A., Michalak, D., Stepien, A. & Kadziolka, A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 155(3): 275-283. 15. Li, W., Yin, D., Zhou, Y. & Wang, L. 2003. 3,4-Dichloroaniline-induced oxidative stress in liver of Crucian carp (Carassius auratus). Ecotoxicology and Environmental Safety, 56: 251-255.
  • 16. Ling, L., Chia-W.L., Yung C., Lai, P.L. & Hsu T. 2017. Oxidative stress intensity-related effects of cadmium and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos. Chemosphere, 167: 10-18.
  • 17. Monteiro, D.A., De Almeida, J.A., Rantin, F.T. & Kalinin, A.L. 2006. Oxidative stress biomarkers in the freshwater characid fish Brycon cephalus exposed to organophosphorus insecticide folisuper 600 (Methyl parathion). Comparative Biochemistry and Physiology, 143: 141-149.
  • 18. Oliveira, J.M.M., Galhano, V., Henriques, I., Soares, A.M.V.M. & Loureiro, S. 2017. Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos. Environmental Pollution, 221: 52-63.
  • 19. Oruç, E.Ö., Sevgiler, Y. & Üner, N. 2004. Tissue-spesific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology, 137: 43-51.
  • 20. Özdaş, E., Ateş, U., Uyanıkgil, Y., Baka, M., Yavaşoğlu, A., Biçer, S., Ergen, G. 2006. Bir herbisit olan 2,4-D’nin sıçanlarda testis dokusu üzerine etkisi. Ege Tıp Dergisi, 45(3): 169-174.
  • 21. Özmen, I.A.M., Cengiz, M., Sirkecioğlu, N. & Atamanalp, M. 2004. Effect of water reduce system on antioxidant enzymes of rainbow trout (Oncorhynchus mykiss W., 1792). Veterinarni Medicina Czech, 49(10): 373-378.
  • 22. Parvez, S. & Raisuddin, S. 2006. Effects of paraquat on the freshwater fish Channa punctata (Bloch): Non-enzymatic antioxidants as biomarkers of exposure. Archives of Environmental Contamination and Toxicology, 50: 392-397.
  • 23. Persch, T.S.P., Weimer, R.N., Freitas, B.S. & Oliveira, G.T. 2017. Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere, 174: 98-109.
  • 24. Piancini, L.D.S., Guiloski, I.C., Silva de Assis, H.C. & Cestari, M.M. 2015. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species. Toxicology Reports, 2: 1157-1163.
  • 25. Sarıkaya, R. & Yılmaz, M. 2003. Investigation of acute toxicity and the effect of 2,4-D herbicide on the behaviour of the common carp (C. carpio L., 1758; Pisces, Cyprinidae). Chemosphere, 52: 195-201.
  • 26. Simonetti, R.B., Marques, L.S., Streit, D.P. & Oberst, E.R. 2015. Zebrafish (Danio rerio): The future of animal model in biomedical research. Journal of Fisheries Sciences. 9(3): 039-045.
  • 27. Stara, A., Machova, J. & Velisek, J. 2012. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp. Environmental Toxicology and Pharmacology. 33: 334-343.
  • 28. Tabassum, H., Ashafaq, M., Khan, J., Shah, Z., Raisuddin, S. & Parvez, S. 2016. Short term exposure of pendimethalin induces biochemical and histological perturbations in liver, kidney and gill of freshwater fish. Ecological Indicators, 63: 29-36. 29. Vasylkiv, O.Y., Kubrak, O.I., Storey, K.B. & Lushchak, V.I. 2011. Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pesticide Biochemistry and Physiology, 101: 1-5.
  • 30. Vigario, A.F., & Saboia-Morais, S.M.T. 2014. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara. Pesquisa Veterinaria Brasileira. 34(6): 523-528.
  • 31. World Health Organization (WHO). 2016. http://www.who.int/foodsafety/areas_work/chemical-risks/jmpr/en/ (Erişim: Mart 2017).
  • 32. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S. & Wang, X. 2012. Oxidative stress responce and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide Biochemistry and Physiology, 103: 74-80.
  • 33. Zhang, J.F., Liu, H., Sun, Y.Y., Wang, X.R.,, Wu, J.C. & Xue, Y.Q. 2005. Responses of the antioxidant defenses of the goldfish Carassius auratus, exposed to 2,4-Dichlorophenol. Environmental Toxicology and Pharmacology, 19: 185-190.
There are 31 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article/Araştırma Makalesi
Authors

Figen Esin Kayhan 0000-0001-7754-1356

Güllü Kaymak

Cansu Akbulut

Nazan Deniz Yön Ertuğ

Publication Date October 20, 2017
Submission Date February 23, 2017
Acceptance Date October 5, 2017
Published in Issue Year 2017 Volume: 18 Issue: 2

Cite

APA Kayhan, F. E., Kaymak, G., Akbulut, C., Yön Ertuğ, N. D. (2017). Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills. Trakya University Journal of Natural Sciences, 18(2), 143-148. https://doi.org/10.23902/trkjnat.294722
AMA Kayhan FE, Kaymak G, Akbulut C, Yön Ertuğ ND. Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills. Trakya Univ J Nat Sci. December 2017;18(2):143-148. doi:10.23902/trkjnat.294722
Chicago Kayhan, Figen Esin, Güllü Kaymak, Cansu Akbulut, and Nazan Deniz Yön Ertuğ. “Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio Rerio Hamilton, 1822) Gills”. Trakya University Journal of Natural Sciences 18, no. 2 (December 2017): 143-48. https://doi.org/10.23902/trkjnat.294722.
EndNote Kayhan FE, Kaymak G, Akbulut C, Yön Ertuğ ND (December 1, 2017) Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills. Trakya University Journal of Natural Sciences 18 2 143–148.
IEEE F. E. Kayhan, G. Kaymak, C. Akbulut, and N. D. Yön Ertuğ, “Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills”, Trakya Univ J Nat Sci, vol. 18, no. 2, pp. 143–148, 2017, doi: 10.23902/trkjnat.294722.
ISNAD Kayhan, Figen Esin et al. “Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio Rerio Hamilton, 1822) Gills”. Trakya University Journal of Natural Sciences 18/2 (December 2017), 143-148. https://doi.org/10.23902/trkjnat.294722.
JAMA Kayhan FE, Kaymak G, Akbulut C, Yön Ertuğ ND. Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills. Trakya Univ J Nat Sci. 2017;18:143–148.
MLA Kayhan, Figen Esin et al. “Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio Rerio Hamilton, 1822) Gills”. Trakya University Journal of Natural Sciences, vol. 18, no. 2, 2017, pp. 143-8, doi:10.23902/trkjnat.294722.
Vancouver Kayhan FE, Kaymak G, Akbulut C, Yön Ertuğ ND. Determination of Acute Effects of 2,4-Dichlorophenoxyacetic Acid on Antioxidant Enzymes and Lipid Peroxidation Levels in Zebrafish (Danio rerio Hamilton, 1822) Gills. Trakya Univ J Nat Sci. 2017;18(2):143-8.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.