Research Article
BibTex RIS Cite

GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS

Year 2018, Volume: 19 Issue: 2, 129 - 135, 15.10.2018
https://doi.org/10.23902/trkjnat.424305

Abstract

Mutations
induced artificially way are one of the tools used to increase genetic
variation in populations where genetic variation has been shrinking especially
due to various reasons one of which is domestication. In this study, Simple
Sequence Repeats (SSRs) markers were used to screen genetic diversity in sodium
azide (NaN3) induced fourteen fourth-generation advanced wheat
mutant lines. The mean values of polymorphism rate (29.44%), polymorphic
information content (PIC; 0.82), marker index (MI; 1.95) and resolving power
(Rp; 1.31) were calculated according to SSR marker profiles. Two SSRs, Xwmc170
and Xcfd6, were detected as the most
polymorphic markers, Xgwm626 proved the highest PIC and MI values,
and Xcfd6 gave the highest Rp value.
Unweighted
Pair Group Method with Arithmetic Mean (UPGMA) dendrogram classified 15 plants
into four groups. The Principle Component Analysis (PCA) showed 88.9% of the
total genetic variation. The results obtained in the present study might be
useful for determining the efficiency of NaN3 for creating mutant
wheat lines with enough genetic variability to implement wheat-breeding
programs as germplasm resources.

References

  • 1. Abdipour, M., Ebrahim, M., Izadi-Darbandi, A., Mastrangelo, A.M., Najafian, G., Arshad, Y. & Mirniyam, G. 2016. Association between grain size and shape and quality traits, and path analysis of thousand-grain weight in Iranian bread wheat landraces from different geographic regions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44: 228-236.
  • 2. Akfirat, S.F. & Uncuoglu, A.A. 2013. Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR Markers. Biochemical Genetics, 51: 223-229.
  • 3. Al-Qurainy, F. & Khan, S. 2009. Mutagenic effects of sodium azide and its application in crop improvement. World Applied Sciences Journal, 6(12): 1589-1601.
  • 4. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. & Sorrells, M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1): 181-186.
  • 5. Doyle, J.J. & Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
  • 6. Genc, Y., Oldach, K., Verbyla, A.P., Lott, G., Hassan, M., Tester, M., Wallwork, H. & McDonald, G.K. 2010. Sodium exclusion QTL associated with improved seedling growth in bread wheat under saline stress. Theoretical Applied Genetics, 121: 877-894.
  • 7. Ghaedrahmati, M., Mardi, M., Naghavi, M.R., Haravan, E.M., Nakhoda, B., Azadi, A. & Kazemi, M. 2014. Mapping QTLs associated with salt tolerance related traits in seedling stage of wheat (Triticum aestivum L.). Journal of Agricultural Science and Technology,16: 1413-1428.
  • 8. International Atomic Energy Agency, www.iaea.org/topics/plant-breeding. (Data Accessed: May 2018).
  • 9. Kovach, W.L. 1999. MVSP-A Multivariate Statistical Package for Windows, v. 3.1. Kovach Computing Services, Pentraeth, 133 pp.
  • 10. Lasalita- Zapico, F. & Aguilar, C.H. 2014. Elucidating plant genetic diversity and evolution through bioinformatics: a review of selected studies. 2014. International Conference on Intelligent Agriculture, IPCBEE 63(2014) IACSIT Press, Singapore, DOI: 10.7763/IPCBEE. 2014. V63.6.
  • 11. Mason, A.S. 2015. SSR Genotyping, Plant Genotyping: Methods and Protocols, In: Batley, J. editor. Methods in Molecular Biology, vol. 1245, Springer Science Business Media, New York, 77-89 pp.
  • 12. Najaphy, A., Parchin, R.A. & Farshadfar, E. 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using Inter Simple Sequence Repeat markers. Biotechnology & Biotechnological Equipment, 25: 2634-2638.
  • 13. Nei, M. & Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269-5273.
  • 14. Olsen, O., Wang, X. & Von Wetttesin, D. 1993. Sodium azide mutagenesis: Preferential generation of AT -> GC transitions in the barley Antl8 gene. Proceedings of the National Academy of Sciences of the United States of America, 90: 8043-8047.
  • 15. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. & Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP SSR (microsatellite) marker for germplasm analysis. Molecular Breeding, 2: 225-238.
  • 16. Prevost, A. & Wilkinson, M.J. 1999. A new system of comparing PCR primers applied to ISSR finger printing of potato cultivars. Theoretical Applied Genetics, 98: 661-668.
  • 17. Sardouie-Nasab, S., Mohammadi-Nejad, G. & Zebarjadi, A. 2013. Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Molecular Biology Reports, 40: 4661-4671.
  • 18. Shahzad, A., Ahmad, M., Iqbal, M., Ahmed, I. & Ali, G.M. 2012. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genetics and Molecular Research, 11: 679-692.
  • 19. Shewry, P.R. 2009. Wheat. Journal of Experimental Botany, 60: 1537-1553.
  • 20. Turki, N., Shehzad, T., Harrabi, M. & Okuno, K. 2015. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 201: 29-41.
  • 21. Wannajindaporn, A., Poolsawat, O., Chaowiset, W. & Tantasawat, P.A. 2014. Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium ‘Earsakul’ mutants. Genetics and Molecular Research, 13: 5333-5342.
  • 22. Wu, L., Li, M., Yang, X., Yang, T. & Wang, J. 2011. ISSR Analysis of Chlorophytum treated by three kinds of chemical mutagen. Journal of Northeast Agricultural University, 18: 21-25.
  • 23. Xu, Y., Li, S., Li, L., Zhang, X., Xu, H. & An, D. 2013. Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breeding, 132: 276-283.

GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS

Year 2018, Volume: 19 Issue: 2, 129 - 135, 15.10.2018
https://doi.org/10.23902/trkjnat.424305

Abstract

Yapay
yolla indüklenen mutasyonlar, genetik varyasyonun özellikle ıslah gibi çeşitli
nedenlerden dolayı küçüldüğü popülasyonlarda, çeşitliliği arttıran araçlardan
biridir. Bu çalışmada, sodyum azid (NaN3) kullanılarak indüklenen on
dört dördüncü jenerasyon ileri mutant buğday hatlarında, genetik çeşitliliği
taramak için Basit Dizi Tekrarları (SSR) belirteçleri kullanıldı. SSR belirteç
profillerine göre ortalama polimorfizm oranı (% 29,44), polimorfik bilgi
içeriği (PIC; 0,82), belirteç indeksi (Mİ; 1,95) ve belirteç çözünürlük gücü
(Rp; 1,31) hesaplandı. İki SSR belirteci, Xwmc170 ve Xcfd6, en yüksek
polimorfizm oranına sahip belirteçler olarak tespit edildi. Xgwm626 en yüksek
PIC ve Mİ değerlerini, Xcfd6 de ​​en yüksek Rp değerini verdi. Ağırlıksız
Çift-Grup Yöntemi ile Aritmetik Ortalama (UPGMA) dendrogramı 15 bitkiyi dört
gruba ayırdı. Temel Bileşenler Analizi (PCA) toplam genetik varyasyonun %
88,9'unu gösterdi. Bu çalışma, buğday ıslah programlarında genetik kaynak
olarak kullanılmak üzere yeterli genetik çeşitliliğe sahip mutant buğday
hatlarını oluşturmak için sodyum azitin etkinliğinin gösterilmesi hususunda
yararlı olabilir.

References

  • 1. Abdipour, M., Ebrahim, M., Izadi-Darbandi, A., Mastrangelo, A.M., Najafian, G., Arshad, Y. & Mirniyam, G. 2016. Association between grain size and shape and quality traits, and path analysis of thousand-grain weight in Iranian bread wheat landraces from different geographic regions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44: 228-236.
  • 2. Akfirat, S.F. & Uncuoglu, A.A. 2013. Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR Markers. Biochemical Genetics, 51: 223-229.
  • 3. Al-Qurainy, F. & Khan, S. 2009. Mutagenic effects of sodium azide and its application in crop improvement. World Applied Sciences Journal, 6(12): 1589-1601.
  • 4. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. & Sorrells, M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1): 181-186.
  • 5. Doyle, J.J. & Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
  • 6. Genc, Y., Oldach, K., Verbyla, A.P., Lott, G., Hassan, M., Tester, M., Wallwork, H. & McDonald, G.K. 2010. Sodium exclusion QTL associated with improved seedling growth in bread wheat under saline stress. Theoretical Applied Genetics, 121: 877-894.
  • 7. Ghaedrahmati, M., Mardi, M., Naghavi, M.R., Haravan, E.M., Nakhoda, B., Azadi, A. & Kazemi, M. 2014. Mapping QTLs associated with salt tolerance related traits in seedling stage of wheat (Triticum aestivum L.). Journal of Agricultural Science and Technology,16: 1413-1428.
  • 8. International Atomic Energy Agency, www.iaea.org/topics/plant-breeding. (Data Accessed: May 2018).
  • 9. Kovach, W.L. 1999. MVSP-A Multivariate Statistical Package for Windows, v. 3.1. Kovach Computing Services, Pentraeth, 133 pp.
  • 10. Lasalita- Zapico, F. & Aguilar, C.H. 2014. Elucidating plant genetic diversity and evolution through bioinformatics: a review of selected studies. 2014. International Conference on Intelligent Agriculture, IPCBEE 63(2014) IACSIT Press, Singapore, DOI: 10.7763/IPCBEE. 2014. V63.6.
  • 11. Mason, A.S. 2015. SSR Genotyping, Plant Genotyping: Methods and Protocols, In: Batley, J. editor. Methods in Molecular Biology, vol. 1245, Springer Science Business Media, New York, 77-89 pp.
  • 12. Najaphy, A., Parchin, R.A. & Farshadfar, E. 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using Inter Simple Sequence Repeat markers. Biotechnology & Biotechnological Equipment, 25: 2634-2638.
  • 13. Nei, M. & Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269-5273.
  • 14. Olsen, O., Wang, X. & Von Wetttesin, D. 1993. Sodium azide mutagenesis: Preferential generation of AT -> GC transitions in the barley Antl8 gene. Proceedings of the National Academy of Sciences of the United States of America, 90: 8043-8047.
  • 15. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. & Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP SSR (microsatellite) marker for germplasm analysis. Molecular Breeding, 2: 225-238.
  • 16. Prevost, A. & Wilkinson, M.J. 1999. A new system of comparing PCR primers applied to ISSR finger printing of potato cultivars. Theoretical Applied Genetics, 98: 661-668.
  • 17. Sardouie-Nasab, S., Mohammadi-Nejad, G. & Zebarjadi, A. 2013. Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Molecular Biology Reports, 40: 4661-4671.
  • 18. Shahzad, A., Ahmad, M., Iqbal, M., Ahmed, I. & Ali, G.M. 2012. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genetics and Molecular Research, 11: 679-692.
  • 19. Shewry, P.R. 2009. Wheat. Journal of Experimental Botany, 60: 1537-1553.
  • 20. Turki, N., Shehzad, T., Harrabi, M. & Okuno, K. 2015. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 201: 29-41.
  • 21. Wannajindaporn, A., Poolsawat, O., Chaowiset, W. & Tantasawat, P.A. 2014. Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium ‘Earsakul’ mutants. Genetics and Molecular Research, 13: 5333-5342.
  • 22. Wu, L., Li, M., Yang, X., Yang, T. & Wang, J. 2011. ISSR Analysis of Chlorophytum treated by three kinds of chemical mutagen. Journal of Northeast Agricultural University, 18: 21-25.
  • 23. Xu, Y., Li, S., Li, L., Zhang, X., Xu, H. & An, D. 2013. Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breeding, 132: 276-283.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Article/Araştırma Makalesi
Authors

Ayşe Şen 0000-0002-1690-4536

Fatma Sarsu This is me

Publication Date October 15, 2018
Submission Date May 16, 2018
Acceptance Date August 16, 2018
Published in Issue Year 2018 Volume: 19 Issue: 2

Cite

APA Şen, A., & Sarsu, F. (2018). GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS. Trakya University Journal of Natural Sciences, 19(2), 129-135. https://doi.org/10.23902/trkjnat.424305
AMA Şen A, Sarsu F. GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS. Trakya Univ J Nat Sci. October 2018;19(2):129-135. doi:10.23902/trkjnat.424305
Chicago Şen, Ayşe, and Fatma Sarsu. “GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS”. Trakya University Journal of Natural Sciences 19, no. 2 (October 2018): 129-35. https://doi.org/10.23902/trkjnat.424305.
EndNote Şen A, Sarsu F (October 1, 2018) GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS. Trakya University Journal of Natural Sciences 19 2 129–135.
IEEE A. Şen and F. Sarsu, “GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS”, Trakya Univ J Nat Sci, vol. 19, no. 2, pp. 129–135, 2018, doi: 10.23902/trkjnat.424305.
ISNAD Şen, Ayşe - Sarsu, Fatma. “GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS”. Trakya University Journal of Natural Sciences 19/2 (October 2018), 129-135. https://doi.org/10.23902/trkjnat.424305.
JAMA Şen A, Sarsu F. GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS. Trakya Univ J Nat Sci. 2018;19:129–135.
MLA Şen, Ayşe and Fatma Sarsu. “GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS”. Trakya University Journal of Natural Sciences, vol. 19, no. 2, 2018, pp. 129-35, doi:10.23902/trkjnat.424305.
Vancouver Şen A, Sarsu F. GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS. Trakya Univ J Nat Sci. 2018;19(2):129-35.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.