Research Article
BibTex RIS Cite
Year 2025, Issue: Online First

Abstract

Bu çalışmada 2,2',4,4',5-pentabromodifenil eter (BDE-99), 0,05 mg/kg ve 0,1 mg/kg dozlarıyla Wistar Albino (250-300 gr) sıçanlara on gün boyunca gavaj yoluyla uygulandı ve karaciğer üzerine in vivo etkileri araştırıldı. Amacımız BDE-99'un karaciğerdeki apoptotik süreç üzerindeki etkilerini araştırmaktı. Önceki çalışmalar BDE-99'un çeşitli dokularda birikime ve oksidatif hasara neden olduğunu göstermiştir. BDE-99 toksisitesinin birincil mekanizmasının oksidatif stresi içerdiği bilinse de apoptozis üzerindeki spesifik etkisi hakkında sınırlı bilgi mevcuttur. Bu nedenle, karaciğerde Proliferating Cell Nuclear Antigen (PCNA), Vimentin ve Topoizomeraz2A (TOP2A) ve Topoizomeraz2B (TOP2B)'nin ve Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) ile immünoreaktivitesi belirlendi. Karaciğerde Süperoksit dismutaz (SOD), Glutatyon peroksidaz (GPX) ve Katalaz (CAT) aktivitesi ölçüldü. Parafine gömülmüş karaciğer dokularından izole edilen total RNA kullanılarak sentezlenen cDNA örneklerinde, p53, Bax, Bcl-2, PCNA ve Vimentin genlerine yönelik qRT-PCR analizleri yapıldı. Karaciğerde hücre zarı hasarı, hipertrofi, endotel hasarı, mononükleer hücre infiltrasyonu Hematoksilen & Eozin boyama ile belirlendi. TUNEL, Vimentin, TOP2A ve TOP2B'nin immünreaktivitesi her iki dozda da arttı, ancak PCNA'nın immünreaktivitesi yalnızca 0,1 mg/kg BDE-99 dozunda anlamlı düzeyde arttı (p < 0.05). Karaciğerde SOD ve GPX aktiviteleri arttı ancak CAT aktivitesi anlamlı düzeyde azaldı (p < 0.05). Bax, Bcl-2, PCNA, Vimentin gen ekspresyonu doza bağlı olarak artarken, p53 ekspresyonu sadece 0,1 mg/kg BDE-99 dozunda arttı. Sonuç olarak, bulgularımız sıçan karaciğerinde BDE-99'un intrinsik mitokondriyal yolda apoptozu indüklediğine işaret etmekte ve BDE-99'a maruz kalmanın karaciğer hastalıkları için potansiyel bir risk faktörü olabileceğini göstermektedir.

Project Number

TÜBAP 2017/85

References

  • 1. Aebi, H. 1974. Catalase, 673-684. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Second Edition), Academic Press, 673-684 pp.
  • 2. Alaee, M., Arias, P., Sjodin, A. & Bergman, A. 2003. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29(6): 683-689. https://doi.org/10.1016/S0160-4120(03)00121-1
  • 3. Albina, M.L., Alonso, V., Linares, V., Belles, M., Sirvent, J.J., Domingo, J.L. & Sanchez, D.J. 2010. Effects of exposure to BDE-99 on oxidative status of liver and kidney in adult rats. Toxicology, 271(1-2): 51-56. https://doi.org/10.1016/j.tox.2010.03.006
  • 4. Armstrong, L.E., Akinbo, S. & Slitt, A.L. 2020. 2,2',4,4',5-Pentabromodiphenyl ether induces lipid accumulation throughout differentiation in 3T3-L1 and human preadipocytes in vitro. Journal of Biochemical And Molecular Toxicology, 34(6): e22485. https://doi.org/10.1002/jbt.22485
  • 5. Arthur, J.R. & Boyne, R. 1985. Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life Science, 36(16): 1569-1575. https://doi.org/10.1016/0024-3205(85)90381-9
  • 6. Bakar, E., Ulucam, E. & Cerkezkayabekir, A. 2015a. Investigation of the protective effects of proanthocyanidin and vitamin E against the toxic effect caused by formaldehyde on the liver tissue. Environmental Toxicology, 30(12): 1406-1415. https://doi.org/10.1002/tox.22010
  • 7. Bakar, E., Ulucam, E. & Cerkezkayabekir, A. 2015b. Protective effects of proanthocyanidin and vitamin E against toxic effects of formaldehyde in kidney tissue. Biotechnic & Histochemistry, 90(1): 69-78. https://doi.org/10.3109/10520295.2014.954620
  • 8. Bakker, M.I., de Winter-Sorkina, R., de Mul, A., Boon, P.E., van Donkersgoed, G., van Klaveren, J.D., Baumann, B.A., Hijman, W.C., van Leeuwen, S.P., de Boer, J. & Zeilmaker, M.J. 2008. Dietary intake and risk evaluation of polybrominated diphenyl ethers in The Netherlands. Molecular Nutrition & Food Research, 52(2): 204-216. https://doi.org/10.1002/mnfr.200700112
  • 9. Birnbaum, L.S. & Staskal, D.F. 2004. Brominated flame retardants: cause for concern? Environmental Health Perspectives, 112(1): 9-17. https://doi.org/10.1289/ehp.6559
  • 10. Chen, L.J., Lebetkin, E.H., Sanders, J.M. & Burka, L.T. 2006. Metabolism and disposition of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) following a single or repeated administration to rats or mice. Xenobiotica, 36(6): 515-534. https://doi.org/10.1080/00498250600674477
  • 11. Darnerud, P.O., Eriksen, G.S., Johannesson, T., Larsen, P.B. & Viluksela, M. 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives, 109 Suppl 1: 49-68. https://doi.org/10.1289/ehp.01109s149
  • 12. Die, Q., Nie, Z., Huang, Q., Yang, Y., Fang, Y., Yang, J. & He, J. 2019. Concentrations and occupational exposure assessment of polybrominated diphenyl ethers in modern Chinese e-waste dismantling workshops. Chemosphere, 214: 379-388. https://doi.org/10.1016/j.chemosphere.2018.09.130 13. Dong, Y., Li, L., Bie, P., Jia, S., Wang, Q., Huang, Z., Qiu, X., Zhang, J. & Hu, J. 2014. Polybrominated diphenyl ethers in farmland soils: Source characterization, deposition contribution and apportionment. Science of The Total Environment, 466-467: 524-532. https://doi.org/10.1016/j.scitotenv.2013.07.058
  • 14. Dunnick, J.K. & Nyska, A. 2009. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Experimental and Toxicologic Pathology, 61(1): 1-12. https://doi.org/10.1016/j.etp.2008.06.008
  • 15. Gudkov, A.V. & Komarova, E.A. 2010. Pathologies associated with the p53 response. Cold Spring Harbor Perspectives in Biology, 2(7): a001180. https://doi.org/10.1101/cshperspect.a001180
  • 16. Guvenius, D., Bergman, A. & Norén, K. 2001. Polybrominated Diphenyl Ethers in Swedish Human Liver and Adipose Tissue. Archives Of Environmental Contamination And Toxicology, 40: 564-570. https://doi.org/10.1007/s002440010211
  • 17. Hakk, H., Larsen, G. & Klasson-Wehler, E. 2002. Tissue disposition, excretion and metabolism of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) in the male Sprague-Dawley rat. Xenobiotica, 32(5): 369-382. https://doi.org/10.1080/00498250110119117
  • 18. Hooper, K. & McDonald, T.A. 2000. The PBDEs: an emerging environmental challenge and another reason for breast-milk monitoring programs. Environmental Health Perspectives, 108(5): 387-392. https://doi.org/10.1289/ehp.00108387
  • 19. Hoppe, A.A. & Carey, G.B. 2007. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity (Silver Spring), 15(12): 2942-2950. https://doi.org/10.1038/oby.2007.351
  • 20. Hou, Y., Fu, J., Sun, S., Jin, Y., Wang, X. & Zhang, L. 2019. BDE-209 induces autophagy and apoptosis via IRE1α/Akt/mTOR signaling pathway in human umbilical vein endothelial cells. Environmental Pollution, 253: 429-438. https://doi.org/10.1016/j.envpol.2019.07.030
  • 21. Johnson-Restrepo, B., Kannan, K., Rapaport, D.P. & Rodan, B.D. 2005. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environmental Science & Technology, 39(14): 5177-5182. https://doi.org/10.1021/es050399x
  • 22. Kraus, R.J. & Ganther, H.E. 1980. Reaction of cyanide with glutathione peroxidase. Biochemical And Biophysical Research Communications, 96(3): 1116-1122. https://doi.org/10.1016/0006-291x(80)90067-4
  • 23. Kuriyama, S.N., Talsness, C.E., Grote, K. & Chahoud, I. 2005. Developmental exposure to low dose PBDE 99: effects on male fertility and neurobehavior in rat offspring. Environmental Health Perspectives, 113(2): 149-154. https://doi.org/10.1289/ehp.7421
  • 24. Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
  • 25. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1): 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • 26. Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F. & Costa, L.G. 2004. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett, 154(1-2): 11-21. https://doi.org/10.1016/j.toxlet.2004.06.013
  • 27. Moldovan, G.L., Pfander, B. & Jentsch, S. 2007. PCNA, the maestro of the replication fork. Cell, 129(4): 665-679. https://doi.org/10.1016/j.cell.2007.05.003
  • 28. Pflaum, J., Schlosser, S. & Muller, M. 2014. p53 Family and Cellular Stress Responses in Cancer. Frontiers in Oncology, 4: 285. https://doi.org/10.3389/fonc.2014.00285
  • 29. Potmesil, M., Hsiang, Y.H., Liu, L.F., Bank, B., Grossberg, H., Kirschenbaum, S., Forlenza, T.J., Penziner, A., Kanganis, D. & et al. 1988. Resistance of human leukemic and normal lymphocytes to drug-induced DNA cleavage and low levels of DNA topoisomerase II. Cancer Research, 48(12): 3537-3543.
  • 30. Souza, A.O., Pereira, L.C., Oliveira, D.P. & Dorta, D.J. 2013. BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line - HepG2. Toxicology In Vitro, 27(2): 580-587. https://doi.org/10.1016/j.tiv.2012.09.022
  • 31. Staskal, D.F., Hakk, H., Bauer, D., Diliberto, J.J. & Birnbaum, L.S. 2006. Toxicokinetics of polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicological Sciences, 94(1): 28-37. https://doi.org/10.1093/toxsci/kfl091
  • 32. Topcu-Tarladacalisir, Y., Akpolat, M., Uz, Y.H., Kizilay, G., Sapmaz-Metin, M., Cerkezkayabekir, A. & Omurlu, I.K. 2013. Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Journal of Medicinal Food, 16(4): 296-305. https://doi.org/10.1089/jmf.2012.2550
  • 33. Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S. & Moll, U.M. 2012. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell, 149(7): 1536-1548. https://doi.org/10.1016/j.cell.2012.05.014
  • 34. Wang, F., Fang, M., Hinton, D.E., Chernick, M., Jia, S., Zhang, Y., Xie, L., Dong, W. & Dong, W. 2018. Increased coiling frequency linked to apoptosis in the brain and altered thyroid signaling in zebrafish embryos (Danio rerio) exposed to the PBDE metabolite 6-OH-BDE-47. Chemosphere, 198: 342-350. https://doi.org/10.1016/j.chemosphere.2018.01.081
  • 35. Wang, F., Ruan, X.J. & Zhang, H.Y. 2015. BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) triggers epithelial-mesenchymal transition in colorectal cancer cells via PI3K/Akt/Snail signaling pathway. Tumori, 101(2): 238-245. https://doi.org/10.5301/tj.5000229
  • 36. Wu, J., Deng, F., Tang, X., Chen, W., Zhou, R., Zhao, T., Mao, X. & Shu, F. 2023. Long-term effect of PBDE-99 prenatal exposure on spermatogenic injuries via the dysregulation of autophagy. Journal of Hazardous Materials, 452: 131234. https://doi.org/10.1016/j.jhazmat.2023.131234
  • 37. Yang, Y., Wang, L., Zhao, Y., Ma, F., Lin, Z., Liu, Y., Dong, Z., Chen, G. & Liu, D. 2022. PBDEs disrupt homeostasis maintenance and regeneration of planarians due to DNA damage, proliferation and apoptosis anomaly. Ecotoxicology and Environmental Safety, 248: 114287. https://doi.org/10.1016/j.ecoenv.2022.114287
  • 38. Zaragoza, R., Garcia, C., Rus, A.D., Pallardo, F.V., Barber, T., Torres, L., Miralles, V.J. & Vina, J.R. 2003. Inhibition of liver trans-sulphuration pathway by propargylglycine mimics gene expression changes found in the mammary gland of weaned lactating rats: role of glutathione. The Biochemical Journal, 373 (Pt 3): 825-834. https://doi.org/10.1042/BJ20030387

Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver

Year 2025, Issue: Online First

Abstract

This study examined in vivo effects of 2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99) on the liver of Wistar Albino rats (250-300 gr) in doses of 0.05 mg/kg and 0.1 mg/kg for ten days by gavage. Our objective was to investigate the effects of BDE-99 on the apoptotic process in the liver. Previous studies have shown that BDE-99 causes accumulation and oxidative damage in various tissues, especially the liver. Although the primary mechanism of BDE-99 toxicity is known to involve oxidative stress, limited information is available on its specific impact on apoptosis. Therefore, immunoreactivity of Proliferating Cell Nuclear Antigen (PCNA), Vimentin and Topoisomeraz2A (TOP2A) and Topoisomeraz2B (TOP2B) and Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) were determined in the liver. Superoxide dismutase (SOD), Glutathione peroxidase (GPX) and Catalase (CAT) activities were measured in the liver. qRT-PCR analyses for the p53, Bax, Bcl-2, PCNA and Vimentin genes were carried out from paraffin-embedded liver tissues. Cell membrane damage, hypertrophy, endothelial injury, mononuclear cell infiltration in the liver were determined by Hematoxylin & Eosin. Immunoreactivity of TUNEL, Vimentin, TOP2A and TOP2B increased in both doses, but immunoreactivity of PCNA significantly increased only 0.1 mg/kg BDE-99 dose (p < 0.05). SOD and GPX activities increased but CAT activity decreased significantly (p < 0.05) in the liver. Bax, Bcl-2, PCNA, Vimentin gene expressions increased in a dose-dependent manner and p53 expression increased only in 0.1 mg/kg BDE-99. In conclusion, our results point out BDE-99 inducing apoptosis of the intrinsic mitochondrial pathway in rat liver and indicate that exposure to BDE-99 is possible to be a potential risk factor for liver diseases.

Ethical Statement

Ethics committee approval was received for this study from the Ethics Committee of Trakya University by the number TUHADYEK 2016/48.

Supporting Institution

Trakya University Scientific Research Committee

Project Number

TÜBAP 2017/85

Thanks

The authors would like to thank Dr. Pelin Türker (Edirne, Türkiye), from Technology Research and Development Application and Research Center (TÜTAGEM) of Trakya University, Edirne, Türkiye for her support in the performing of the qRT-PCR.

References

  • 1. Aebi, H. 1974. Catalase, 673-684. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Second Edition), Academic Press, 673-684 pp.
  • 2. Alaee, M., Arias, P., Sjodin, A. & Bergman, A. 2003. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29(6): 683-689. https://doi.org/10.1016/S0160-4120(03)00121-1
  • 3. Albina, M.L., Alonso, V., Linares, V., Belles, M., Sirvent, J.J., Domingo, J.L. & Sanchez, D.J. 2010. Effects of exposure to BDE-99 on oxidative status of liver and kidney in adult rats. Toxicology, 271(1-2): 51-56. https://doi.org/10.1016/j.tox.2010.03.006
  • 4. Armstrong, L.E., Akinbo, S. & Slitt, A.L. 2020. 2,2',4,4',5-Pentabromodiphenyl ether induces lipid accumulation throughout differentiation in 3T3-L1 and human preadipocytes in vitro. Journal of Biochemical And Molecular Toxicology, 34(6): e22485. https://doi.org/10.1002/jbt.22485
  • 5. Arthur, J.R. & Boyne, R. 1985. Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life Science, 36(16): 1569-1575. https://doi.org/10.1016/0024-3205(85)90381-9
  • 6. Bakar, E., Ulucam, E. & Cerkezkayabekir, A. 2015a. Investigation of the protective effects of proanthocyanidin and vitamin E against the toxic effect caused by formaldehyde on the liver tissue. Environmental Toxicology, 30(12): 1406-1415. https://doi.org/10.1002/tox.22010
  • 7. Bakar, E., Ulucam, E. & Cerkezkayabekir, A. 2015b. Protective effects of proanthocyanidin and vitamin E against toxic effects of formaldehyde in kidney tissue. Biotechnic & Histochemistry, 90(1): 69-78. https://doi.org/10.3109/10520295.2014.954620
  • 8. Bakker, M.I., de Winter-Sorkina, R., de Mul, A., Boon, P.E., van Donkersgoed, G., van Klaveren, J.D., Baumann, B.A., Hijman, W.C., van Leeuwen, S.P., de Boer, J. & Zeilmaker, M.J. 2008. Dietary intake and risk evaluation of polybrominated diphenyl ethers in The Netherlands. Molecular Nutrition & Food Research, 52(2): 204-216. https://doi.org/10.1002/mnfr.200700112
  • 9. Birnbaum, L.S. & Staskal, D.F. 2004. Brominated flame retardants: cause for concern? Environmental Health Perspectives, 112(1): 9-17. https://doi.org/10.1289/ehp.6559
  • 10. Chen, L.J., Lebetkin, E.H., Sanders, J.M. & Burka, L.T. 2006. Metabolism and disposition of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) following a single or repeated administration to rats or mice. Xenobiotica, 36(6): 515-534. https://doi.org/10.1080/00498250600674477
  • 11. Darnerud, P.O., Eriksen, G.S., Johannesson, T., Larsen, P.B. & Viluksela, M. 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives, 109 Suppl 1: 49-68. https://doi.org/10.1289/ehp.01109s149
  • 12. Die, Q., Nie, Z., Huang, Q., Yang, Y., Fang, Y., Yang, J. & He, J. 2019. Concentrations and occupational exposure assessment of polybrominated diphenyl ethers in modern Chinese e-waste dismantling workshops. Chemosphere, 214: 379-388. https://doi.org/10.1016/j.chemosphere.2018.09.130 13. Dong, Y., Li, L., Bie, P., Jia, S., Wang, Q., Huang, Z., Qiu, X., Zhang, J. & Hu, J. 2014. Polybrominated diphenyl ethers in farmland soils: Source characterization, deposition contribution and apportionment. Science of The Total Environment, 466-467: 524-532. https://doi.org/10.1016/j.scitotenv.2013.07.058
  • 14. Dunnick, J.K. & Nyska, A. 2009. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Experimental and Toxicologic Pathology, 61(1): 1-12. https://doi.org/10.1016/j.etp.2008.06.008
  • 15. Gudkov, A.V. & Komarova, E.A. 2010. Pathologies associated with the p53 response. Cold Spring Harbor Perspectives in Biology, 2(7): a001180. https://doi.org/10.1101/cshperspect.a001180
  • 16. Guvenius, D., Bergman, A. & Norén, K. 2001. Polybrominated Diphenyl Ethers in Swedish Human Liver and Adipose Tissue. Archives Of Environmental Contamination And Toxicology, 40: 564-570. https://doi.org/10.1007/s002440010211
  • 17. Hakk, H., Larsen, G. & Klasson-Wehler, E. 2002. Tissue disposition, excretion and metabolism of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) in the male Sprague-Dawley rat. Xenobiotica, 32(5): 369-382. https://doi.org/10.1080/00498250110119117
  • 18. Hooper, K. & McDonald, T.A. 2000. The PBDEs: an emerging environmental challenge and another reason for breast-milk monitoring programs. Environmental Health Perspectives, 108(5): 387-392. https://doi.org/10.1289/ehp.00108387
  • 19. Hoppe, A.A. & Carey, G.B. 2007. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity (Silver Spring), 15(12): 2942-2950. https://doi.org/10.1038/oby.2007.351
  • 20. Hou, Y., Fu, J., Sun, S., Jin, Y., Wang, X. & Zhang, L. 2019. BDE-209 induces autophagy and apoptosis via IRE1α/Akt/mTOR signaling pathway in human umbilical vein endothelial cells. Environmental Pollution, 253: 429-438. https://doi.org/10.1016/j.envpol.2019.07.030
  • 21. Johnson-Restrepo, B., Kannan, K., Rapaport, D.P. & Rodan, B.D. 2005. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environmental Science & Technology, 39(14): 5177-5182. https://doi.org/10.1021/es050399x
  • 22. Kraus, R.J. & Ganther, H.E. 1980. Reaction of cyanide with glutathione peroxidase. Biochemical And Biophysical Research Communications, 96(3): 1116-1122. https://doi.org/10.1016/0006-291x(80)90067-4
  • 23. Kuriyama, S.N., Talsness, C.E., Grote, K. & Chahoud, I. 2005. Developmental exposure to low dose PBDE 99: effects on male fertility and neurobehavior in rat offspring. Environmental Health Perspectives, 113(2): 149-154. https://doi.org/10.1289/ehp.7421
  • 24. Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
  • 25. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1): 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • 26. Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F. & Costa, L.G. 2004. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett, 154(1-2): 11-21. https://doi.org/10.1016/j.toxlet.2004.06.013
  • 27. Moldovan, G.L., Pfander, B. & Jentsch, S. 2007. PCNA, the maestro of the replication fork. Cell, 129(4): 665-679. https://doi.org/10.1016/j.cell.2007.05.003
  • 28. Pflaum, J., Schlosser, S. & Muller, M. 2014. p53 Family and Cellular Stress Responses in Cancer. Frontiers in Oncology, 4: 285. https://doi.org/10.3389/fonc.2014.00285
  • 29. Potmesil, M., Hsiang, Y.H., Liu, L.F., Bank, B., Grossberg, H., Kirschenbaum, S., Forlenza, T.J., Penziner, A., Kanganis, D. & et al. 1988. Resistance of human leukemic and normal lymphocytes to drug-induced DNA cleavage and low levels of DNA topoisomerase II. Cancer Research, 48(12): 3537-3543.
  • 30. Souza, A.O., Pereira, L.C., Oliveira, D.P. & Dorta, D.J. 2013. BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line - HepG2. Toxicology In Vitro, 27(2): 580-587. https://doi.org/10.1016/j.tiv.2012.09.022
  • 31. Staskal, D.F., Hakk, H., Bauer, D., Diliberto, J.J. & Birnbaum, L.S. 2006. Toxicokinetics of polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicological Sciences, 94(1): 28-37. https://doi.org/10.1093/toxsci/kfl091
  • 32. Topcu-Tarladacalisir, Y., Akpolat, M., Uz, Y.H., Kizilay, G., Sapmaz-Metin, M., Cerkezkayabekir, A. & Omurlu, I.K. 2013. Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Journal of Medicinal Food, 16(4): 296-305. https://doi.org/10.1089/jmf.2012.2550
  • 33. Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S. & Moll, U.M. 2012. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell, 149(7): 1536-1548. https://doi.org/10.1016/j.cell.2012.05.014
  • 34. Wang, F., Fang, M., Hinton, D.E., Chernick, M., Jia, S., Zhang, Y., Xie, L., Dong, W. & Dong, W. 2018. Increased coiling frequency linked to apoptosis in the brain and altered thyroid signaling in zebrafish embryos (Danio rerio) exposed to the PBDE metabolite 6-OH-BDE-47. Chemosphere, 198: 342-350. https://doi.org/10.1016/j.chemosphere.2018.01.081
  • 35. Wang, F., Ruan, X.J. & Zhang, H.Y. 2015. BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) triggers epithelial-mesenchymal transition in colorectal cancer cells via PI3K/Akt/Snail signaling pathway. Tumori, 101(2): 238-245. https://doi.org/10.5301/tj.5000229
  • 36. Wu, J., Deng, F., Tang, X., Chen, W., Zhou, R., Zhao, T., Mao, X. & Shu, F. 2023. Long-term effect of PBDE-99 prenatal exposure on spermatogenic injuries via the dysregulation of autophagy. Journal of Hazardous Materials, 452: 131234. https://doi.org/10.1016/j.jhazmat.2023.131234
  • 37. Yang, Y., Wang, L., Zhao, Y., Ma, F., Lin, Z., Liu, Y., Dong, Z., Chen, G. & Liu, D. 2022. PBDEs disrupt homeostasis maintenance and regeneration of planarians due to DNA damage, proliferation and apoptosis anomaly. Ecotoxicology and Environmental Safety, 248: 114287. https://doi.org/10.1016/j.ecoenv.2022.114287
  • 38. Zaragoza, R., Garcia, C., Rus, A.D., Pallardo, F.V., Barber, T., Torres, L., Miralles, V.J. & Vina, J.R. 2003. Inhibition of liver trans-sulphuration pathway by propargylglycine mimics gene expression changes found in the mammary gland of weaned lactating rats: role of glutathione. The Biochemical Journal, 373 (Pt 3): 825-834. https://doi.org/10.1042/BJ20030387
There are 37 citations in total.

Details

Primary Language English
Subjects Cell Metabolism
Journal Section Research Article/Araştırma Makalesi
Authors

Ayşegül Çerkezkayabekir 0000-0001-5537-1042

Elvan Bakar 0000-0001-5703-3469

Deniz Yüksel Yence 0000-0001-8696-9725

Project Number TÜBAP 2017/85
Early Pub Date March 5, 2025
Publication Date
Submission Date October 16, 2024
Acceptance Date January 30, 2025
Published in Issue Year 2025 Issue: Online First

Cite

APA Çerkezkayabekir, A., Bakar, E., & Yüksel Yence, D. (2025). Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver. Trakya University Journal of Natural Sciences(Online First).
AMA Çerkezkayabekir A, Bakar E, Yüksel Yence D. Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver. Trakya Univ J Nat Sci. March 2025;(Online First).
Chicago Çerkezkayabekir, Ayşegül, Elvan Bakar, and Deniz Yüksel Yence. “Brominated Flame Retardant BDE-99 Promotes Apoptosis by Intrinsic Mitochondrial Pathway in Rat Liver”. Trakya University Journal of Natural Sciences, no. Online First (March 2025).
EndNote Çerkezkayabekir A, Bakar E, Yüksel Yence D (March 1, 2025) Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver. Trakya University Journal of Natural Sciences Online First
IEEE A. Çerkezkayabekir, E. Bakar, and D. Yüksel Yence, “Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver”, Trakya Univ J Nat Sci, no. Online First, March 2025.
ISNAD Çerkezkayabekir, Ayşegül et al. “Brominated Flame Retardant BDE-99 Promotes Apoptosis by Intrinsic Mitochondrial Pathway in Rat Liver”. Trakya University Journal of Natural Sciences Online First (March 2025).
JAMA Çerkezkayabekir A, Bakar E, Yüksel Yence D. Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver. Trakya Univ J Nat Sci. 2025.
MLA Çerkezkayabekir, Ayşegül et al. “Brominated Flame Retardant BDE-99 Promotes Apoptosis by Intrinsic Mitochondrial Pathway in Rat Liver”. Trakya University Journal of Natural Sciences, no. Online First, 2025.
Vancouver Çerkezkayabekir A, Bakar E, Yüksel Yence D. Brominated flame retardant BDE-99 promotes apoptosis by intrinsic mitochondrial pathway in rat liver. Trakya Univ J Nat Sci. 2025(Online First).

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.