Research Article
BibTex RIS Cite

Fungal contamination in residential water systems: A comparative study between hot and cold water samples

Year 2025, Volume: 26 Issue: 1, 61 - 72, 15.04.2025
https://doi.org/10.23902/trkjnat.1576675

Abstract

Some fungal species are known to have adverse health effects for humans and their presence in water systems may lead to alterations in the taste and odour of the water they occupy. Although a few country-based regulations are known, no universal legal restriction on the presence of fungi in drinking or utility water is present currently. Waterborne fungi have been a neglected part of microbial studies worldwide, and more sudies are needed in the current era of global warming. This study was performed to evaluate (i) the fungal load in randomly selected residential water systems connected to the municipal water supply in Istanbul, Türkiye, and (ii) the possible impact of water temperature on the number and biodiversity of fungi. Additionally, the relationship between bacterial loads, some water parameters and the determined fungi were investigated. Cold and hot water samples were taken from 20 randomly selected buildings in Istanbul and inoculated into SDA using the membrane filtration method for fungal isolation, and onto R2A and Candida Agar using the spread plate method for bacterial and Candida isolation, respectively. More microorganisms were detected in cold water samples than in hot water. The mean fungal and bacterial numbers in cold and hot water samples were 2.4, 1.47, 702.3 and 79.5 cfu/100 mL, respectively. No Candida was found. It was determined that temperature affected the biodiversity and frequency of fungi. Penicillium (41%) and Aspergillus (43.75%) were the dominant fungal genera in cold and hot water, respectively. Aspergillus versicolor was the most common fungal species found in both water samples. 9 of fungi were identified that are known to have the potential to cause allergies and/or opportunistic infections. No relationship was detected between fungal growth and pH and chlorine.

Ethical Statement

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

Supporting Institution

Scientific Research Project Coordination Unit of Istanbul University

Project Number

FYL-2020-36872

Thanks

This study was funded by Scientific Research Project Coordination Unit of Istanbul University. Project number: FYL-2020-36872.

References

  • 1. Alangaden, G.J. 2011. Nosocomial fungal infections: Epidemiology, infection control, and prevention. Infectious Disease Clinics, 25(1): 201-225. https://doi.org/10.1016/j.idc.2010.11.003
  • 2. Anaissie, E.J., Kuchar, R.T., Rex, J.H., Francesconi, A., Kasai, M., Muller, F.C., Lozano Chiu, M., Summerbell, R.C., Dignani, M.C., Chanock, S.J. & Walsh, T.J. 2001. Fusariosis associated with pathogenic Fusarium species colonization of a hospital water system: A new paradigm for the epidemiology of opportunistic mold infections. Clinical Infectious Diseases, 33(11): 1871-1878. https://doi.org/10.1086/324501
  • 3. Anaissie, E.J., Stratton, S.L., Dignani, M.C., Summerbell, R.C., Rex, J.H., Monson, T.P., Spencer, T., Kasai, M., Francesconi, A. & Walsh, T.J. 2002. Pathogenic Aspergillus species recovered from a hospital water system: A 3-year prospective study. Clinical Infectious Diseases, 34(6): 780-789. https://doi.org/10.1086/338958
  • 4. Babič, M., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., Sabino, R., Viegas, C., Meyer, W. & Brandao, J. 2017. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International Journal of Environmental Research and Public Health, 14(6): 636. https://doi.org/10.3390/ijerph14060636
  • 5. Barnett, H. L. & Hunter, B. B. 1999. Illustrated genera of imperfect fungi, 4th ed., APS Press, St. Paul, Minnesota, USA, 0-89054-192-2.
  • 6. Barros Afonso, T., Simoes, L. C. & Lima, N. 2019. In vitro assessment of inter-kingdom biofilm formation by bacteria and filamentous fungi isolated from a drinking water distribution system, Biofouling, 35(10): 1041-1054. https://doi.org/10.1080/08927014.2019.1688793
  • 7. Barros Afonso, T., Simoes, L. C. & Lima, N. 2020. Effect of quorum sensing and quenching molecules on inter-kingdom biofilm formation by Penicillium expansum and bacteria. Biofouling, 36(8): 965–976. https://doi.org/10.1080/08927014.2020.1836162
  • 8. Barros Afonso, T., Simoes, L. C. & Lima, N. 2021. Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation, Research in Microbiology, 172(1): 103791. https://doi.org/10.1016/j.resmic.2020.11.002
  • 9. Bays, L.R., Burman N.P. & Lewis W.M. 1970. Taste and odor in water supplies in Great Britain: A survey of the present position and problems for the future. Water Treatment and Examination,19(2): 136-160.
  • 10. Burman, N.P. 1965. Taste and odour due to stagnation and local warming in long lengths of piping. Proceedings of the Society for Water Treatment and Examination, 14: 125-131.
  • 11. Canhoto, C., Goncalves, A.L. & Baerlocher, F. 2016. Biology and ecological functions of aquatic hyphomycetes in a warming climate. Fungal Ecology, 19: 201-218. https://doi.org/10.1016/j.funeco.2015.09.011
  • 12. Czech Republic Ministry of Health. 2004. ČVyhláška č. 252/2004 Sb., kterou se stanoví hygienické požadavky na pitnou a teplou vodu a četnost a rozsah kontroly pitné vody. Praha: Ministerstvo zdravotnictví.
  • 13. Doggett, M.S. 2000. Characterization of fungal biofilms within a municipal water distribution system. Applied And Environmental Microbiology, 66(3): 1249-1251 https://doi.org/10.1128/aem.66.3.1249-1251.2000
  • 14. Ellis, M.B. 1971. Dematiaceous Hyphomycetes, The Eastern Press, London, 608 pp. 85198027-9.
  • 15. Figueiredo Fonseca, J.C., Bouakline, A., Claisse, J.P., Feuilhade, M., Baruchel, A., Dombret, H., Pavie, J., Andrade Moreira, E.S., Derouin, F. & Lacroix, C. 2010. Fungal contamination of water and water-related surfaces in three hospital wards with immunocompromised patients at risk for invasive fungal infections. Journal of Infection Prevention, 11(2): 36-41. https://doi.org/10.1177/1757177409358416
  • 16. Goksay Kadaifciler, D., Unsal, T. & Ilhan-Sungur, E. 2024. Long-term evaluation of culturable fungi in a natural aging biofilm on galvanised steel surface: Fungi in aging biofilm on galvanised steel surfaces. Johnson Matthey Technology Review, 68(1): 60-70. https://doi.org/10.1595/205651323X16748145957998
  • 17. Hageskal, G., Knutsen, A.K., Gaustad, P., de Hoog, G.S. & Skaar, I. 2006. Diversity and significance of mold species in Norwegian drinking water. Applied and Environmental Microbiology, 72(12): 7586-7593. https://doi.org/10.1128/AEM.01628-06
  • 18. Hapçıoğlu, B., Yegenoglu, Y., Erturan, Z., Nakipoglu, Y. & Issever, H. 2005. Heterotrophic bacteria and filamentous fungi isolated from a hospital water distribution system. Indoor and Built Environment, 14(6): 487-493. https://doi.org/10.1177/1420326X05060039
  • 19. Hawksworth, D.L., Crous, P.W. & Redhead, S.A. 2011. The Amsterdam declaration on fungal nomenclature. IMA Fungus, 2: 105-112. https://doi.org/10.5598/imafungus.2011.02.01.14
  • 20. Hayette, M.P., Christiaens, G., Mutsers, J., Barbier, C., Huynen, P., Melin, P. & de Mol, P. 2010. Filamentous fungi recovered from the water distribution system of a Belgian university hospital. Medical Mycology, 48(7): 969-974. https://doi.org/10.3109/13693781003639601
  • 21. Hi-Media. 2003. The Hi-Media manual for microbiology and cell culture laboratory practice, Hi-Media Laboratories Pvt. Limited, India, 19.
  • 22. Hyde, K.D., Fryar, S., Tan, Q., Bahkali, A. H. & Xu, J. 2016. Lignicolous freshwater fungi along a north south latitudinal gradient in the Asian/Australian region; Can we predict the impact of global warming on biodiversity and function? Fungal Ecology, 19: 19-200. https://doi.org/10.1016/j.funeco.2015.07.002
  • 23. Index Fungorum Partnership, 2008, ISF search index fungorum, http://www.indexfungorum.org/Names/Names.asp, (Date accessed: 20.11.2022).
  • 24. Istanbul Water and Sewerage Administration (IWSA), https://www.iski.istanbul/web/tr-TR/su-kalite-raporlari, (Date Accessed: 22.12.2022).
  • 25. Kadaifçiler, D.G. & Çotuk, A. 2014. Microbial contamination of dental unit waterlines and effect on quality of indoor air. Environmental Monitoring and Assessment, 186: 3431-3444. https://doi.org/10.1007/s10661-014-3628-6
  • 26. Kadaifçiler, D.G. & Demirel, R. 2018. Fungal contaminants in man-made water systems connected to municipal water. Journal of Water and Health, 16(2): 244-252. https://doi.org/10.2166/wh.2018.272
  • 27. Kanzler, D., Buzina, W., Paulitsch, A., Haas, D., Platzer, S., Marth, E. & Mascher, F. 2007. Occurrence and hygienic relevance of fungi in drinking water. Mycoses, 51(2): 165-169. https://doi.org/10.1111/j.1439-0507.2007.01454.x
  • 28. Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A. & Kendall, A. M. 2002. Literature review – Efficacy of various disinfectants against Legionella in water systems, Water Research, 36: 4433-4444. https://doi.org/10.1016/S0043-1354(02)00188-4
  • 29. Klich, M.A. 2002. Identification of common Aspergillus species, Utrecht, The Netherlands, VI + 116 pp. ISBN 90-70351-46-3
  • 30. Lee, D., Calendo, G., Kopec, K., Henry, R., Coutts, S., McCarthy, D. & Murphy, H.M. 2021. The impact of pipe material on the diversity of microbial communities in drinking water distribution systems. Frontiers in Microbiology, 12: 779016. https://doi.org/10.3389/fmicb.2021.779016
  • 31. Leginowicz, M., Siedlecka, A. & Piekarska, K. 2018. Biodiversity and antibiotic resistance of bacteria isolated from tap water in Wroclaw, Poland. Environment Protection Engineering, 44 (4): 85-98. https://doi.org/10.5277/epe180406
  • 32. Ma, X., Baron, J.L., Vikram, A., Stout, J.E. & Bibby, K. 2015. Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Research, 71: 197-206. https://doi.org/10.1016/j.watres.2014.12.052
  • 33. Makris, K.C., Andra, S.S & Botsaris, G. 2014. Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality. Critical Reviews in Environmental Science and Technology, 44(13): 1477-1523. https://doi.org/10.1080/10643389.2013.790746
  • 34. Marangoni, P.R.D., Robl, D., Dalzoto, P.R., Berton, M.A.C., Vicente, V.A., Pimentel, I.C. 2013. Microbial diversity of biofilms on metallic surfaces in natural waters case study in a hydropower plant on amazon forest. Journal of Water Resource and Hydraulic Engineering, 2(4):140-148. http://JWRHE10027-20131224-145001-9003-39180.pdf
  • 35. Migrino, R.Q., Hall, G.S. & Longworth, D.L. 1995. Deep tissue infections caused by Scopulariopsis brevicaulis: report of a case of prosthetic valve endocarditis and review. Clinical Infectious Diseases, 21(3): 672-674. https://doi.org/10.1093/clinids/21.3.672
  • 36. Ministry of Health of Hungary. Government Decree 201/2001 on the Quality and Monitoring Requirements of Drinking Water. 1st ed. Ministry of Health; Budapest, Hungary: 2001.
  • 37. MycoBank, 2008, International Mycological Association, http://www.mycobank.org/quicksearch.aspx, (Date Accessed: 21.11.2022).
  • 38. Pereira, V.J., Marques, R., Marques, M., Benoliel, M.J. & Crespo, M.B. 2013. Free chlorine inactivation of fungi in drinking water sources. Water Research, 47(2): 517-523. https://doi.org/10.1016/j.watres.2012.09.052
  • 39. Pitt, J.I. 1979. The genus Penicillium and its telemorphic states Eupenicillium and Talaromyces, 3th ed., Academic Press Inc., London, 0-12-557750-7.
  • 40. Preciado C.C., Boxall, J., Carrasco V.S., Martinez, S. & Douterelo, I. 2021. Implications of climate change: How does ıncreased water temperature ınfluence biofilm and water quality of chlorinated drinking water distribution systems? Frontiers in Microbiology, 12: 658927. https://doi.org/10.3389/fmicb.2021.658927
  • 41. Provincial Health Directorate of Istanbul. https://istanbulism.saglik.gov.tr/TR,109716/icme-kullanma-sulari-sehir-sebeke-suyu.html (Date Accessed: 14.12.2022).
  • 42. Richardson, M. & Rautemaa-Richardson, R. 2019. Exposure to Aspergillus in home and healthcare facilities’ water environments: Focus on biofilms. Microorganisms, 7(1): 7. https://doi.org/10.3390/microorganisms7010007
  • 43. Rosenzweig, W.D., Minnigh, H.A. & Pipes, W.O. 1983. Chlorine demand and inactivation of fungal propagules. Applied and Environmental Microbiology, 45(1): 182-186. https://doi.org/10.1128/aem.45.1.182-186.1983
  • 44. Sammon, N.B., Harrower, K.M., Fabbro, L.D. & Reed, R.H. 2010. Incidence and distribution of microfungi in a treated municipal water supply system in sub-tropical Australia. International Journal of Environmental Research and Public Health, 7(4): 1597-1611. https://doi.org/10.3390/ijerph7041597
  • 45. Sammon, N.B., Harrower, K.M., Fabbro, L.D. & Reed, R.H. 2011. Three potential sources of microfungi in a treated municipal water supply system in Sub-Tropical Australia. International Journal of Environmental Research and Public Health, 8(3): 713-732. https://doi.org/10.3390/ijerph8030713
  • 46. Swedish National Food Agency, Livsmedelsverkets Föreskrifter om Dricksvatten, SLVFS 2001:30, 1st ed., National Food Administration: Uppsala, 33 pp.
  • 47. Tiwari, S., Thakur, R. & Shankar, J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnology Research International, 2015: 132635. https://doi.org/10.1155/2015/132635
  • 48. Warris, A., Gaustad, P., Meis, J.F., Voss, A., Verweij, P.E. & Abrahamsen, T.G. 2001. Recovery of filamentous fungi from water in a paediatric bone marrow transplantation unit. Journal of Hospital Infection, 47(2): 143-148. https://doi.org/10.1053/jhin.2000.0876
  • 49. World Health Organization, (WHO) 2022. Guidelines Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. ISBN 978-92-4-004506-4.
  • 50. Xing, W., Yin, M., Lv, Q., Hu, Y., Liu, C.& Zhang, J. 2014. Oxygen solubility, diffusion coefficient, and solution viscosity, pp.1-31. In: Xing, W., Yin, G. & Zhang, J. (eds). Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier, Amsterdam, 306 pp.
  • 51. Zacheus, O.M. & Martikainen, P.J. 1995. Occurrence of heterotrophic bacteria and fungi in cold and hot water distribution systems using water of different quality, Canadian Journal of Microbiology, 41(12): 1088-1094. https://doi.org/10.1139/m95-152
Year 2025, Volume: 26 Issue: 1, 61 - 72, 15.04.2025
https://doi.org/10.23902/trkjnat.1576675

Abstract

Bazı mantar türlerinin insanlar için olumsuz sağlık etkileri olduğu bilinmektedir ve su sistemlerinde bulunmaları, bulundukları suyun tadında ve kokusunda değişikliklere yol açabilir. Birkaç ülke bazlı yasal düzenleme bilinmesine rağmen, şu anda içme veya kullanma suyunda mantar varlığına ilişkin evrensel bir yasal kısıtlama bulunmamaktadır. Su kaynaklı mantarlar, dünya çapında mikrobiyal çalışmaların ihmal edilmiş bir parçasıdır ve küresel ısınmanın yaşandığı günümüzde daha fazla çalışmaya ihtiyaç duyulmaktadır. Bu çalışma, (i) İstanbul, Türkiye'deki belediye su şebekesine bağlı rastgele seçilmiş konut su sistemlerindeki mantar yükünü ve (ii) su sıcaklığının mantar sayısı ve biyolojik çeşitliliği üzerindeki olası etkisini değerlendirmek için gerçekleştirilmiştir. Ek olarak, bakteri yükleri, bazı su parametreleri ve belirlenen mantarlar arasındaki ilişki araştırılmıştır. İstanbul'da rastgele seçilmiş 20 binadan soğuk ve sıcak su örnekleri alınmış ve mantar izolasyonu için membran filtrasyon yöntemi kullanılarak SDA'ya, bakteri ve Candida izolasyonu için sırasıyla yayılmış plaka yöntemi kullanılarak R2A ve Candida Agar'a ekimleri yapılmıştır. Soğuk su örneklerinde sıcak sudan daha fazla mikroorganizma tespit edilmiştir. Soğuk ve sıcak su örneklerindeki ortalama mantar ve bakteri sayıları sırasıyla 2,4, 1,47, 702,3 ve 79,5 cfu/100 mL olarak bulundu. Candida bulunamadı. Sıcaklığın mantarların biyoçeşitliliğini ve sıklığını etkilediği belirlendi. Soğuk ve sıcak suda sırasıyla baskın mantar cinsleri Penicillium (%41) ve Aspergillus (%43,75) idi. Her iki su örneğinde de en sık bulunan mantar türü Aspergillus versicolor idi. Alerji ve/veya fırsatçı enfeksiyonlara neden olma potansiyeli olduğu bilinen 9 mantar türü tanımlanmıştır. Mantar üremesi ile pH ve klor arasında bir ilişki saptanmamıştır.

Project Number

FYL-2020-36872

References

  • 1. Alangaden, G.J. 2011. Nosocomial fungal infections: Epidemiology, infection control, and prevention. Infectious Disease Clinics, 25(1): 201-225. https://doi.org/10.1016/j.idc.2010.11.003
  • 2. Anaissie, E.J., Kuchar, R.T., Rex, J.H., Francesconi, A., Kasai, M., Muller, F.C., Lozano Chiu, M., Summerbell, R.C., Dignani, M.C., Chanock, S.J. & Walsh, T.J. 2001. Fusariosis associated with pathogenic Fusarium species colonization of a hospital water system: A new paradigm for the epidemiology of opportunistic mold infections. Clinical Infectious Diseases, 33(11): 1871-1878. https://doi.org/10.1086/324501
  • 3. Anaissie, E.J., Stratton, S.L., Dignani, M.C., Summerbell, R.C., Rex, J.H., Monson, T.P., Spencer, T., Kasai, M., Francesconi, A. & Walsh, T.J. 2002. Pathogenic Aspergillus species recovered from a hospital water system: A 3-year prospective study. Clinical Infectious Diseases, 34(6): 780-789. https://doi.org/10.1086/338958
  • 4. Babič, M., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., Sabino, R., Viegas, C., Meyer, W. & Brandao, J. 2017. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International Journal of Environmental Research and Public Health, 14(6): 636. https://doi.org/10.3390/ijerph14060636
  • 5. Barnett, H. L. & Hunter, B. B. 1999. Illustrated genera of imperfect fungi, 4th ed., APS Press, St. Paul, Minnesota, USA, 0-89054-192-2.
  • 6. Barros Afonso, T., Simoes, L. C. & Lima, N. 2019. In vitro assessment of inter-kingdom biofilm formation by bacteria and filamentous fungi isolated from a drinking water distribution system, Biofouling, 35(10): 1041-1054. https://doi.org/10.1080/08927014.2019.1688793
  • 7. Barros Afonso, T., Simoes, L. C. & Lima, N. 2020. Effect of quorum sensing and quenching molecules on inter-kingdom biofilm formation by Penicillium expansum and bacteria. Biofouling, 36(8): 965–976. https://doi.org/10.1080/08927014.2020.1836162
  • 8. Barros Afonso, T., Simoes, L. C. & Lima, N. 2021. Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation, Research in Microbiology, 172(1): 103791. https://doi.org/10.1016/j.resmic.2020.11.002
  • 9. Bays, L.R., Burman N.P. & Lewis W.M. 1970. Taste and odor in water supplies in Great Britain: A survey of the present position and problems for the future. Water Treatment and Examination,19(2): 136-160.
  • 10. Burman, N.P. 1965. Taste and odour due to stagnation and local warming in long lengths of piping. Proceedings of the Society for Water Treatment and Examination, 14: 125-131.
  • 11. Canhoto, C., Goncalves, A.L. & Baerlocher, F. 2016. Biology and ecological functions of aquatic hyphomycetes in a warming climate. Fungal Ecology, 19: 201-218. https://doi.org/10.1016/j.funeco.2015.09.011
  • 12. Czech Republic Ministry of Health. 2004. ČVyhláška č. 252/2004 Sb., kterou se stanoví hygienické požadavky na pitnou a teplou vodu a četnost a rozsah kontroly pitné vody. Praha: Ministerstvo zdravotnictví.
  • 13. Doggett, M.S. 2000. Characterization of fungal biofilms within a municipal water distribution system. Applied And Environmental Microbiology, 66(3): 1249-1251 https://doi.org/10.1128/aem.66.3.1249-1251.2000
  • 14. Ellis, M.B. 1971. Dematiaceous Hyphomycetes, The Eastern Press, London, 608 pp. 85198027-9.
  • 15. Figueiredo Fonseca, J.C., Bouakline, A., Claisse, J.P., Feuilhade, M., Baruchel, A., Dombret, H., Pavie, J., Andrade Moreira, E.S., Derouin, F. & Lacroix, C. 2010. Fungal contamination of water and water-related surfaces in three hospital wards with immunocompromised patients at risk for invasive fungal infections. Journal of Infection Prevention, 11(2): 36-41. https://doi.org/10.1177/1757177409358416
  • 16. Goksay Kadaifciler, D., Unsal, T. & Ilhan-Sungur, E. 2024. Long-term evaluation of culturable fungi in a natural aging biofilm on galvanised steel surface: Fungi in aging biofilm on galvanised steel surfaces. Johnson Matthey Technology Review, 68(1): 60-70. https://doi.org/10.1595/205651323X16748145957998
  • 17. Hageskal, G., Knutsen, A.K., Gaustad, P., de Hoog, G.S. & Skaar, I. 2006. Diversity and significance of mold species in Norwegian drinking water. Applied and Environmental Microbiology, 72(12): 7586-7593. https://doi.org/10.1128/AEM.01628-06
  • 18. Hapçıoğlu, B., Yegenoglu, Y., Erturan, Z., Nakipoglu, Y. & Issever, H. 2005. Heterotrophic bacteria and filamentous fungi isolated from a hospital water distribution system. Indoor and Built Environment, 14(6): 487-493. https://doi.org/10.1177/1420326X05060039
  • 19. Hawksworth, D.L., Crous, P.W. & Redhead, S.A. 2011. The Amsterdam declaration on fungal nomenclature. IMA Fungus, 2: 105-112. https://doi.org/10.5598/imafungus.2011.02.01.14
  • 20. Hayette, M.P., Christiaens, G., Mutsers, J., Barbier, C., Huynen, P., Melin, P. & de Mol, P. 2010. Filamentous fungi recovered from the water distribution system of a Belgian university hospital. Medical Mycology, 48(7): 969-974. https://doi.org/10.3109/13693781003639601
  • 21. Hi-Media. 2003. The Hi-Media manual for microbiology and cell culture laboratory practice, Hi-Media Laboratories Pvt. Limited, India, 19.
  • 22. Hyde, K.D., Fryar, S., Tan, Q., Bahkali, A. H. & Xu, J. 2016. Lignicolous freshwater fungi along a north south latitudinal gradient in the Asian/Australian region; Can we predict the impact of global warming on biodiversity and function? Fungal Ecology, 19: 19-200. https://doi.org/10.1016/j.funeco.2015.07.002
  • 23. Index Fungorum Partnership, 2008, ISF search index fungorum, http://www.indexfungorum.org/Names/Names.asp, (Date accessed: 20.11.2022).
  • 24. Istanbul Water and Sewerage Administration (IWSA), https://www.iski.istanbul/web/tr-TR/su-kalite-raporlari, (Date Accessed: 22.12.2022).
  • 25. Kadaifçiler, D.G. & Çotuk, A. 2014. Microbial contamination of dental unit waterlines and effect on quality of indoor air. Environmental Monitoring and Assessment, 186: 3431-3444. https://doi.org/10.1007/s10661-014-3628-6
  • 26. Kadaifçiler, D.G. & Demirel, R. 2018. Fungal contaminants in man-made water systems connected to municipal water. Journal of Water and Health, 16(2): 244-252. https://doi.org/10.2166/wh.2018.272
  • 27. Kanzler, D., Buzina, W., Paulitsch, A., Haas, D., Platzer, S., Marth, E. & Mascher, F. 2007. Occurrence and hygienic relevance of fungi in drinking water. Mycoses, 51(2): 165-169. https://doi.org/10.1111/j.1439-0507.2007.01454.x
  • 28. Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A. & Kendall, A. M. 2002. Literature review – Efficacy of various disinfectants against Legionella in water systems, Water Research, 36: 4433-4444. https://doi.org/10.1016/S0043-1354(02)00188-4
  • 29. Klich, M.A. 2002. Identification of common Aspergillus species, Utrecht, The Netherlands, VI + 116 pp. ISBN 90-70351-46-3
  • 30. Lee, D., Calendo, G., Kopec, K., Henry, R., Coutts, S., McCarthy, D. & Murphy, H.M. 2021. The impact of pipe material on the diversity of microbial communities in drinking water distribution systems. Frontiers in Microbiology, 12: 779016. https://doi.org/10.3389/fmicb.2021.779016
  • 31. Leginowicz, M., Siedlecka, A. & Piekarska, K. 2018. Biodiversity and antibiotic resistance of bacteria isolated from tap water in Wroclaw, Poland. Environment Protection Engineering, 44 (4): 85-98. https://doi.org/10.5277/epe180406
  • 32. Ma, X., Baron, J.L., Vikram, A., Stout, J.E. & Bibby, K. 2015. Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Research, 71: 197-206. https://doi.org/10.1016/j.watres.2014.12.052
  • 33. Makris, K.C., Andra, S.S & Botsaris, G. 2014. Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality. Critical Reviews in Environmental Science and Technology, 44(13): 1477-1523. https://doi.org/10.1080/10643389.2013.790746
  • 34. Marangoni, P.R.D., Robl, D., Dalzoto, P.R., Berton, M.A.C., Vicente, V.A., Pimentel, I.C. 2013. Microbial diversity of biofilms on metallic surfaces in natural waters case study in a hydropower plant on amazon forest. Journal of Water Resource and Hydraulic Engineering, 2(4):140-148. http://JWRHE10027-20131224-145001-9003-39180.pdf
  • 35. Migrino, R.Q., Hall, G.S. & Longworth, D.L. 1995. Deep tissue infections caused by Scopulariopsis brevicaulis: report of a case of prosthetic valve endocarditis and review. Clinical Infectious Diseases, 21(3): 672-674. https://doi.org/10.1093/clinids/21.3.672
  • 36. Ministry of Health of Hungary. Government Decree 201/2001 on the Quality and Monitoring Requirements of Drinking Water. 1st ed. Ministry of Health; Budapest, Hungary: 2001.
  • 37. MycoBank, 2008, International Mycological Association, http://www.mycobank.org/quicksearch.aspx, (Date Accessed: 21.11.2022).
  • 38. Pereira, V.J., Marques, R., Marques, M., Benoliel, M.J. & Crespo, M.B. 2013. Free chlorine inactivation of fungi in drinking water sources. Water Research, 47(2): 517-523. https://doi.org/10.1016/j.watres.2012.09.052
  • 39. Pitt, J.I. 1979. The genus Penicillium and its telemorphic states Eupenicillium and Talaromyces, 3th ed., Academic Press Inc., London, 0-12-557750-7.
  • 40. Preciado C.C., Boxall, J., Carrasco V.S., Martinez, S. & Douterelo, I. 2021. Implications of climate change: How does ıncreased water temperature ınfluence biofilm and water quality of chlorinated drinking water distribution systems? Frontiers in Microbiology, 12: 658927. https://doi.org/10.3389/fmicb.2021.658927
  • 41. Provincial Health Directorate of Istanbul. https://istanbulism.saglik.gov.tr/TR,109716/icme-kullanma-sulari-sehir-sebeke-suyu.html (Date Accessed: 14.12.2022).
  • 42. Richardson, M. & Rautemaa-Richardson, R. 2019. Exposure to Aspergillus in home and healthcare facilities’ water environments: Focus on biofilms. Microorganisms, 7(1): 7. https://doi.org/10.3390/microorganisms7010007
  • 43. Rosenzweig, W.D., Minnigh, H.A. & Pipes, W.O. 1983. Chlorine demand and inactivation of fungal propagules. Applied and Environmental Microbiology, 45(1): 182-186. https://doi.org/10.1128/aem.45.1.182-186.1983
  • 44. Sammon, N.B., Harrower, K.M., Fabbro, L.D. & Reed, R.H. 2010. Incidence and distribution of microfungi in a treated municipal water supply system in sub-tropical Australia. International Journal of Environmental Research and Public Health, 7(4): 1597-1611. https://doi.org/10.3390/ijerph7041597
  • 45. Sammon, N.B., Harrower, K.M., Fabbro, L.D. & Reed, R.H. 2011. Three potential sources of microfungi in a treated municipal water supply system in Sub-Tropical Australia. International Journal of Environmental Research and Public Health, 8(3): 713-732. https://doi.org/10.3390/ijerph8030713
  • 46. Swedish National Food Agency, Livsmedelsverkets Föreskrifter om Dricksvatten, SLVFS 2001:30, 1st ed., National Food Administration: Uppsala, 33 pp.
  • 47. Tiwari, S., Thakur, R. & Shankar, J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnology Research International, 2015: 132635. https://doi.org/10.1155/2015/132635
  • 48. Warris, A., Gaustad, P., Meis, J.F., Voss, A., Verweij, P.E. & Abrahamsen, T.G. 2001. Recovery of filamentous fungi from water in a paediatric bone marrow transplantation unit. Journal of Hospital Infection, 47(2): 143-148. https://doi.org/10.1053/jhin.2000.0876
  • 49. World Health Organization, (WHO) 2022. Guidelines Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. ISBN 978-92-4-004506-4.
  • 50. Xing, W., Yin, M., Lv, Q., Hu, Y., Liu, C.& Zhang, J. 2014. Oxygen solubility, diffusion coefficient, and solution viscosity, pp.1-31. In: Xing, W., Yin, G. & Zhang, J. (eds). Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier, Amsterdam, 306 pp.
  • 51. Zacheus, O.M. & Martikainen, P.J. 1995. Occurrence of heterotrophic bacteria and fungi in cold and hot water distribution systems using water of different quality, Canadian Journal of Microbiology, 41(12): 1088-1094. https://doi.org/10.1139/m95-152
There are 51 citations in total.

Details

Primary Language English
Subjects Mycology
Journal Section Research Article/Araştırma Makalesi
Authors

Esra Merve Dizge 0000-0003-2272-6956

Duygu Kadaifçiler 0000-0002-4825-243X

Project Number FYL-2020-36872
Publication Date April 15, 2025
Submission Date December 13, 2024
Acceptance Date April 7, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

APA Dizge, E. M., & Kadaifçiler, D. (2025). Fungal contamination in residential water systems: A comparative study between hot and cold water samples. Trakya University Journal of Natural Sciences, 26(1), 61-72. https://doi.org/10.23902/trkjnat.1576675
AMA Dizge EM, Kadaifçiler D. Fungal contamination in residential water systems: A comparative study between hot and cold water samples. Trakya Univ J Nat Sci. April 2025;26(1):61-72. doi:10.23902/trkjnat.1576675
Chicago Dizge, Esra Merve, and Duygu Kadaifçiler. “Fungal Contamination in Residential Water Systems: A Comparative Study Between Hot and Cold Water Samples”. Trakya University Journal of Natural Sciences 26, no. 1 (April 2025): 61-72. https://doi.org/10.23902/trkjnat.1576675.
EndNote Dizge EM, Kadaifçiler D (April 1, 2025) Fungal contamination in residential water systems: A comparative study between hot and cold water samples. Trakya University Journal of Natural Sciences 26 1 61–72.
IEEE E. M. Dizge and D. Kadaifçiler, “Fungal contamination in residential water systems: A comparative study between hot and cold water samples”, Trakya Univ J Nat Sci, vol. 26, no. 1, pp. 61–72, 2025, doi: 10.23902/trkjnat.1576675.
ISNAD Dizge, Esra Merve - Kadaifçiler, Duygu. “Fungal Contamination in Residential Water Systems: A Comparative Study Between Hot and Cold Water Samples”. Trakya University Journal of Natural Sciences 26/1 (April 2025), 61-72. https://doi.org/10.23902/trkjnat.1576675.
JAMA Dizge EM, Kadaifçiler D. Fungal contamination in residential water systems: A comparative study between hot and cold water samples. Trakya Univ J Nat Sci. 2025;26:61–72.
MLA Dizge, Esra Merve and Duygu Kadaifçiler. “Fungal Contamination in Residential Water Systems: A Comparative Study Between Hot and Cold Water Samples”. Trakya University Journal of Natural Sciences, vol. 26, no. 1, 2025, pp. 61-72, doi:10.23902/trkjnat.1576675.
Vancouver Dizge EM, Kadaifçiler D. Fungal contamination in residential water systems: A comparative study between hot and cold water samples. Trakya Univ J Nat Sci. 2025;26(1):61-72.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.