Research Article
BibTex RIS Cite

İletişim Çalışmalarında Yapay Zekâ: 1982-2021 Yılları Arasındaki Çalışmalara Yönelik Bir İnceleme

Year 2021, Volume: 6 Issue: 13, 680 - 699, 30.09.2021
https://doi.org/10.37679/trta.965966

Abstract

Bu çalışmada, yapay zekâyı konu alan medya ve iletişim çalışmalarının profilini keşfetmek ve konuyla ilgili literatürün genel yapısına ilişkin bir perspektif sunmak amaçlanmıştır. Araştırmada, 1982 ile 2021 yılları arasında yayımlanan 459 bilimsel çalışma bibliyometrik veriler ile incelenmiştir. 2016 yılından itibaren çalışmaların sayısı her yıl artmaktadır. En çok yayın yapan ülke %25,1 ile Amerika Birleşik Devletleri’dir. Türkiye dört yayın ile 54 ülke arasında 28. sıradadır. Makale türündeki 267 yayın 96 farklı dergiye dağılmaktadır. Bu dağılımın Bradford Yasası’na uygunluğu test edilerek yapay zekâ konusunda iletişim literatürünün ihtiyacını karşılayan sekiz çekirdek dergi tespit edilmiştir. New Media & Society birinci sıradadır. Çalışmalarda ele alınan konular gazetecilik, doğal dil işleme, insan-robot etkileşimi, sosyal medya botları, halkla ilişkiler ve reklamcılık konularında yoğunlaşmaktadır. Özet metinlerde ve anahtar kelimelerde en sık kullanılan kavramlar, “otomatik gazetecilik”, “hesaplamalı gazetecilik”, “robot gazetecilik”,
“etik”, “yalan haber” şeklindedir. Digital Journalism, en sık atıf yapılan dergidir. Atıf yapılan yayınların yarı yaşam değeri yedi yıldır. Elde edilen sonuçlar, iletişim çalışmalarındaki yapay zekâ trendlerini ve iletişim literatürünün genel yapısını ortaya koymaktadır. Ayrıca literatür eskimesi ve çekirdek dergilere ilişkin ulaşılan sonuçların, kütüphanelerde aboneliklerin ve dergi koleksiyonlarının oluşturulmasına katkı sağlayacağı değerlendirilmektedir.

References

  • Akay, E. Ç., Soydan, T. Y., & Gacar, B. K. (2020). Machine learning and economics: Bibliometric analysis. PressAcademia Procedia (PAP), 12, 104-109. doi:10.17261/Pressacademia.2020.1367
  • Al, U., & Tonta, Y. (2004). Atıf analizi: Hacettepe Üniversitesi Kütüphanecilik Bölümü tezlerinde atıf yapılan kaynaklar [Citation analysis: Sources cited in dissertations completed at Hacettepe University Department of Librarianship]. Information World/Bilgi Dünyası, 5(1), 19-47.
  • Alaimo, C., & Kallinikos, J. (2018). Objects, metrics and practices: An inquiry into the programmatic advertising ecosystem. In U. Schultze, M. Aanestad, M. Mähring, C. Østerlund, & K. Riemer (Eds.), Living with Monsters? Social Implications of Algorithmic Phenomena, Hybrid Agency, and the Performativity of Technology. IS&O 2018. IFIP Advances in Information and Communication Technology (pp. 110-123). Springer, Cham. doi:10.1007/978-3-030-04091-8_9
  • Binbaşıoğlu, H. (2020). Akıllı turizm üzerine bibliyometrik bir literatür taraması [A bibliometric literature review on smart tourism]. Journal of Tourism and Gastronomy Studies, 8(4), 2825-2847. doi:10.21325/jotags.2020.740
  • Busch, O. (2016). The programmatic advertising principle. In O. Busch (Ed.), Programmatic Advertising (pp. 3-15). Springer, Cham. doi:10.1007/978-3-319-25023-6_1
  • Calvo Rubio, L. M., & Ufarte Ruiz, M. J. (2021). Artificial intelligence and journalism: Systematic review of scientific production in Web of Science and Scopus (2008-2019). Communication & Society, 34(2), 159-176.
  • Caswell, D., & Dörr, K. (2018). Automated journalism 2.0: Event-driven narratives. Journalism Practice, 12(4), s. 477-496. doi:10.1080/17512786.2017.1320773
  • Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation and information science. Amsterdam: Elsevier. Retrieved from https://documentserver.uhasselt.be//handle/1942/587
  • Garfield, E. (1980). Bradford’s law and related statistical patterns. Essays of an Information Scientist, 4, 476-483. Retrieved from http://garfield.library.upenn.edu/essays/v4p476y1979-80.pdf
  • Gökkurt, Ö. (1994). Enformetri, Bradford Yasası ve citation indeks [Informetrics, Bradford’s Law and citation index]. Turkish Librarianship/Türk Kütüphaneciliği, 8(1), 26-30.
  • Kocakoç, İ. D., Kantarcı, S., İyilikçi, V., & Başok, B. İ. (2021). COVID-19 ile ilişikili yapay zeka araştırmalarının veri bilimi yöntemleriyle bibliyometrik analizi [Bibliometric analysis of artificial intelligence studies related to COVID-19 using data science methodologies]. II. International Artificial Intelligence Health Congress, Artificial Intelligence: Theory and Applications. Special Issue (Abstracts), s. 57. Izmir: Izmir Bakircay University. Retrieved from https://aita.bakircay.edu.tr
  • Lee, N., Kim, K., & Taeseon, Y. (2017). Implementation of robot journalism by programming custombot using tokenization and custom tagging. 19th International Conference on Advanced Communication Technology (ICACT) (pp. 566-570). PyeongChang: IEEE. doi:10.23919/ICACT.2017.7890154
  • McGuigan, L. (2019). Automating the audience commodity: The unacknowledged ancestry of programmatic advertising. New Media & Society, 21(11-12), 2366-2385. doi:10.1177/1461444819846449
  • Nash-Stewart, C. E., Kruesi, L. M., & Del Mar, C. B. (2012). Does Bradford’s Law of Scattering predict the size of the literature in Cochrane Reviews? Journal of the Medical Library Association, 100(2), 135-138. doi:10.3163/1536- 5050.100.2.013
  • Özdemir, M., & Selçuk, S. A. (2021). Mimarlıkta makine öğrenmesi: Bibliyometrik bir analiz [Machine learning in architecture: A bibliometric analysis]. Online Journal of Art and Design, 9(4), 194-207.
  • Özel, Ç. H., & Kozak, N. (2012). Turizm Pazarlaması Alanının Bibliyometrik Profili (2000-2010) ve Bir Atıf Analizi Çalışması [Bibliometric profile of tourism marketing literature from 2000 to 2010 and a citation analysis study]. Turkish Librarianship/Türk Kütüphaneciliği, 26(4), 715-733.
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348-349.
  • Schwencke, K. (2021). GitHub. Retrieved July 4, 2021, from https://github.com/schwanksta
  • Sim, D. H., & Shin, S. J. (2016). Implementation of algorithm to write articles by Stock Robot. International Journal of Advanced Smart Convergence, 5(4), 40-47. doi:10.7236/IJASC.2016.5.4.40
  • Tosyalı, H., & Aytekin, Ç. (2020). Development of Robot Journalism Application: Tweets of News Content in the Turkish Language Shared by a Bot. Journal of Information Technology Management, 12(Special Issue), 68-88. doi:10.22059/JITM.2020.79335
  • White, G. R., & Samuel, A. (2019). Programmatic advertising: Forewarning and avoiding hype-cycle failure. Technological Forecasting and Social Change, 144, 157-168. doi:10.1016/j.techfore.2019.03.020

Artificial Intelligence in Communication Studies: An Investigation on Studies Between 1982-2021

Year 2021, Volume: 6 Issue: 13, 680 - 699, 30.09.2021
https://doi.org/10.37679/trta.965966

Abstract

This study explores the profile of media and communication studies on artificial intelligence and presents a perspective on the general structure of the literature. In this study, 459 scientific studies published between 1982 and 2021, which have been increasing even further since 2016, were examined via bibliometric data. The country that published the most was the USA with 25.1%. Turkey ranked 28th among 54 countries with four publications. Two hundred sixty-seven article publications were distributed in 96 different journals. By testing the compatibility of this distribution with Bradford’s Law, eight core journals meeting the needs of communication literature on artificial intelligence, were identified. New Media & Society ranked first on this list. Topics covered in the studies focused on journalism, natural language processing, human-robot interaction, social media bots, public relations and advertising. The most frequently used concepts in abstracts and keywords were “automated journalism,” “computational journalism,” “robot journalism,” “ethics,” “fake news.” The most frequently cited journal was Digital Journalism. The half-life value of cited publications was seven years. The results revealed the artificial intelligence trends in communication studies and the general structure of the communication literature. In addition, it is suggested that the results regarding literature obsolescence and core journals would contribute to the creation of subscriptions and journal collections in libraries.

References

  • Akay, E. Ç., Soydan, T. Y., & Gacar, B. K. (2020). Machine learning and economics: Bibliometric analysis. PressAcademia Procedia (PAP), 12, 104-109. doi:10.17261/Pressacademia.2020.1367
  • Al, U., & Tonta, Y. (2004). Atıf analizi: Hacettepe Üniversitesi Kütüphanecilik Bölümü tezlerinde atıf yapılan kaynaklar [Citation analysis: Sources cited in dissertations completed at Hacettepe University Department of Librarianship]. Information World/Bilgi Dünyası, 5(1), 19-47.
  • Alaimo, C., & Kallinikos, J. (2018). Objects, metrics and practices: An inquiry into the programmatic advertising ecosystem. In U. Schultze, M. Aanestad, M. Mähring, C. Østerlund, & K. Riemer (Eds.), Living with Monsters? Social Implications of Algorithmic Phenomena, Hybrid Agency, and the Performativity of Technology. IS&O 2018. IFIP Advances in Information and Communication Technology (pp. 110-123). Springer, Cham. doi:10.1007/978-3-030-04091-8_9
  • Binbaşıoğlu, H. (2020). Akıllı turizm üzerine bibliyometrik bir literatür taraması [A bibliometric literature review on smart tourism]. Journal of Tourism and Gastronomy Studies, 8(4), 2825-2847. doi:10.21325/jotags.2020.740
  • Busch, O. (2016). The programmatic advertising principle. In O. Busch (Ed.), Programmatic Advertising (pp. 3-15). Springer, Cham. doi:10.1007/978-3-319-25023-6_1
  • Calvo Rubio, L. M., & Ufarte Ruiz, M. J. (2021). Artificial intelligence and journalism: Systematic review of scientific production in Web of Science and Scopus (2008-2019). Communication & Society, 34(2), 159-176.
  • Caswell, D., & Dörr, K. (2018). Automated journalism 2.0: Event-driven narratives. Journalism Practice, 12(4), s. 477-496. doi:10.1080/17512786.2017.1320773
  • Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation and information science. Amsterdam: Elsevier. Retrieved from https://documentserver.uhasselt.be//handle/1942/587
  • Garfield, E. (1980). Bradford’s law and related statistical patterns. Essays of an Information Scientist, 4, 476-483. Retrieved from http://garfield.library.upenn.edu/essays/v4p476y1979-80.pdf
  • Gökkurt, Ö. (1994). Enformetri, Bradford Yasası ve citation indeks [Informetrics, Bradford’s Law and citation index]. Turkish Librarianship/Türk Kütüphaneciliği, 8(1), 26-30.
  • Kocakoç, İ. D., Kantarcı, S., İyilikçi, V., & Başok, B. İ. (2021). COVID-19 ile ilişikili yapay zeka araştırmalarının veri bilimi yöntemleriyle bibliyometrik analizi [Bibliometric analysis of artificial intelligence studies related to COVID-19 using data science methodologies]. II. International Artificial Intelligence Health Congress, Artificial Intelligence: Theory and Applications. Special Issue (Abstracts), s. 57. Izmir: Izmir Bakircay University. Retrieved from https://aita.bakircay.edu.tr
  • Lee, N., Kim, K., & Taeseon, Y. (2017). Implementation of robot journalism by programming custombot using tokenization and custom tagging. 19th International Conference on Advanced Communication Technology (ICACT) (pp. 566-570). PyeongChang: IEEE. doi:10.23919/ICACT.2017.7890154
  • McGuigan, L. (2019). Automating the audience commodity: The unacknowledged ancestry of programmatic advertising. New Media & Society, 21(11-12), 2366-2385. doi:10.1177/1461444819846449
  • Nash-Stewart, C. E., Kruesi, L. M., & Del Mar, C. B. (2012). Does Bradford’s Law of Scattering predict the size of the literature in Cochrane Reviews? Journal of the Medical Library Association, 100(2), 135-138. doi:10.3163/1536- 5050.100.2.013
  • Özdemir, M., & Selçuk, S. A. (2021). Mimarlıkta makine öğrenmesi: Bibliyometrik bir analiz [Machine learning in architecture: A bibliometric analysis]. Online Journal of Art and Design, 9(4), 194-207.
  • Özel, Ç. H., & Kozak, N. (2012). Turizm Pazarlaması Alanının Bibliyometrik Profili (2000-2010) ve Bir Atıf Analizi Çalışması [Bibliometric profile of tourism marketing literature from 2000 to 2010 and a citation analysis study]. Turkish Librarianship/Türk Kütüphaneciliği, 26(4), 715-733.
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348-349.
  • Schwencke, K. (2021). GitHub. Retrieved July 4, 2021, from https://github.com/schwanksta
  • Sim, D. H., & Shin, S. J. (2016). Implementation of algorithm to write articles by Stock Robot. International Journal of Advanced Smart Convergence, 5(4), 40-47. doi:10.7236/IJASC.2016.5.4.40
  • Tosyalı, H., & Aytekin, Ç. (2020). Development of Robot Journalism Application: Tweets of News Content in the Turkish Language Shared by a Bot. Journal of Information Technology Management, 12(Special Issue), 68-88. doi:10.22059/JITM.2020.79335
  • White, G. R., & Samuel, A. (2019). Programmatic advertising: Forewarning and avoiding hype-cycle failure. Technological Forecasting and Social Change, 144, 157-168. doi:10.1016/j.techfore.2019.03.020
There are 21 citations in total.

Details

Primary Language English
Subjects Communication and Media Studies
Journal Section Articles
Authors

Hikmet Tosyalı 0000-0002-9639-5072

Publication Date September 30, 2021
Submission Date July 9, 2021
Acceptance Date September 13, 2021
Published in Issue Year 2021 Volume: 6 Issue: 13

Cite

APA Tosyalı, H. (2021). Artificial Intelligence in Communication Studies: An Investigation on Studies Between 1982-2021. TRT Akademi, 6(13), 680-699. https://doi.org/10.37679/trta.965966