Review
BibTex RIS Cite

POTENTIAL OF BIOLOGICAL MORTAR FOR MICRO-CRACK REMEDIATION OF CALCAREOUS STONES IN HISTORICAL MONUMENTS

Year 2021, , 223 - 236, 31.12.2021
https://doi.org/10.22520/tubaked2021.24.012

Abstract

Since the early ages, first human beings, then architects and civil engineers have preferred stones for the construction of historic monuments and buildings due to their durable nature. But in the course of time, these stones have inescapably been faced with different kinds of weathering processes because of several biotic and abiotic weathering factors. In calcareous stones, micro-cracks/fissures are the common deterioration forms resulting from these weathering processes, and in the long term, they affect the durability of the structure. The survival of monuments and buildings is substantially related with the protection and the conservation of the materials from which they are constructed. To this end, several treatment approaches have been developed for the micro-crack remediation of these materials but there is still room for improvement to fulfill multiple aspects of remediation studies. Although many studies and applications can be found on biomineralization techniques and approaches, few studies have been conducted on biological mortars. This review highlights the potential of biological mortar acquired through biomineralization as an alternative bio-based repair material for the healing of micro-cracks of historic calcareous stones. Promising findings from laboratory analyses and field observations of biological mortars are given with a brief discussion on limitations, challenges, and future works in relation with remediation of micro-cracks of stones.

Supporting Institution

TÜBİTAK-ARDEB 1001

Project Number

115M188

References

  • Abd El Aal, A. (2017). Identification and characterization of near surface cavities in Tuwaiq Mountain Limestone, Riyadh, KSA, “detection and treatment.” Egyptian Journal of Petroleum, 26(1), 215–223. https://doi.org/10.1016/j.ejpe.2016.04.004
  • Adolphe, J. P., Loubiere, J. F., Paradas, J., & Soleilhavoup, F. (1990). Procédé de traitement biologique d’une surface artificielle.
  • Annamalai, S. K., Arunachalam, K. D., Sathyanarayanan, K. S., & Kumar, V. R. (2013). Characterization and Applications of Biocement Enchanced with Carbon Nanotubes for Improved Remediation on Cracked Concrete Structures. Asian Journal of Chemistry, 25, S143–S146.
  • Barabesi, C., Galizzi, A., Mastromei, G., Rossi, M., Tamburini, E., & Perito, B. (2007). Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization. Journal of Bacteriology, 189(1), 228–235. https://doi.org/10.1128/JB.01450-06
  • Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of Biomineralization of Magnetite by Microbes. Geomicrobiology Journal, 24(6), 465–475. https://doi.org/10.1080/01490450701572259
  • Ben Omar, N., Arias, J. M., & González-Muñoz, M. T. (1997). Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia, 13(2), 161–172.
  • Böke, H., Çizer, Ö., İpekoğlu, B., Uğurlu, E., Şerifaki, K., & Toprak, G. (2008). Characteristics of lime produced from limestone containing diatoms. Construction and Building Materials, 22(5), 866–874. https://doi.org/10.1016/j.conbuildmat.2006.12.010
  • Boquet, E., Boronat, A., & Ramos-Cormenzana, A. (1973). Production of calcite (Calcium carbonate) crystals by soil bacteria is a general phenomenon.
  • Borsoi, G. (2017). Nanostructured lime-based materials for the conservation of calcareous substrates. A+BE | Architecture and the Built Environment.
  • Cartwright, T. A., Vergès-Belmin, V., & International Scientific Committee for Stone (Eds.). (2008). Illustrated glossary on stone deterioration =: Glossaire illustré sur les formes d’altération de la pierre. ICOMOS.
  • Castanier, S. (1987). Microbiogeologie: Processus et modalites de la carbonatogenese bacterienne.
  • Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J.-P. (1999). Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sedimentary Geology, 126(1–4), 9–23. https://doi.org/10.1016/S0037-0738(99)00028-7
  • Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., &
  • Balagurusamy, N. (2019). Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Frontiers in Materials, 6, 126. https://doi.org/10.3389/fmats.2019.00126
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010a). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010b). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • Delgado Rodrigues, J., & Ferreira Pinto, A. P. (2019). Stone consolidation by biomineralisation. Contribution for a new conceptual and practical approach to consolidate soft decayed limestones. Journal of Cultural Heritage, 39, 82–92. https://doi.org/10.1016/j.culher.2019.04.022
  • Doehne, E. F., Price, C. A., & Getty Conservation Institute. (2010). Stone conservation: An overview of current research. Getty Conservation Institute.
  • Drew, G. H. (1911). The action of some denitrifying bacteria in tropical and temperate seas, and bacterial precipitation of calcium carbonate in the sea. J. Mar. Biol. Ass., 9, 142–155.
  • Güçhan, D. N. Ş. (2018). Tarihi Kireçtaşlarını Koruma Müdahalelerinde Uygulamak Üzere Kalsit Üreten Bakterilerle Biyolojik Harç Geliştirilmesi Program Kodu: 1001 Proje No: 115M188 (p. 110). https://app.trdizin.gov.tr/publication/project/detail/TWpBek9UZzQ
  • Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Applied and Environmental Microbiology, 69(8), 4901–4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  • Hansen, E., Doehne, E., Fidler, J., Larson, J., Martin, B., Matteini, M., Rodriguez-Navarro, C., Pardo, E. S., Price, C., de Tagle, A., Teutonico, J. M., & Weiss, N. (2003). A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Studies in Conservation, 48(sup1), 13–25. https://doi.org/10.1179/sic.2003.48.Supplement-1.13
  • Jagadeesha Kumar, B. G., Prabhakara, R., & Pushpa, H. (2013). Effect of Bacterial Calcite Precipitation on Compressive Strength of Mortar Cubes.
  • Jonkers, H. M. (2011). Bacteria-based self-healing concrete. Heron, 56(1/2), 1–12.
  • Jroundi, F., Gonzalez-Muñoz, M. T., & Rodriguez-Navarro, C. (2021). Protection and Consolidation of Stone Heritage by Bacterial Carbonatogenesis. In E. Joseph (Ed.), Microorganisms in the Deterioration and Preservation of Cultural Heritage (pp. 281–299). Springer International Publishing. https://doi.org/10.1007/978-3-030-69411-1_13
  • Klisińska-Kopacz, A., Tišlova, R., Adamski, G., & Kozłowski, R. (2010). Pore structure of historic and repair Roman cement mortars to establish their compatibility. Journal of Cultural Heritage, 11(4), 404–410. https://doi.org/10.1016/j.culher.2010.03.002
  • Knorre, H., & Krumbein, K. E. (2000). Bacterial calcification. 25–31.
  • Le Métayer-Levrel, G., Castanier, S., Orial, G., Loubière, J.-F., & Perthuisot, J.-P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology, 126(1–4), 25–34. https://doi.org/10.1016/S0037-0738(99)00029-9
  • Lewin, S. Z., & Baer, N. S. (1974). Rationale of the Barium Hydroxide-Urea Treatment of Decayed Stone. 13.
  • Lowenstan, H. A., & Weiner, S. (1989). In Biomineralization. Oxford University Press.
  • McNabb, K. D. (2012). Evaluation of Consolidation Treatments for the San José Convento Column, San Antonio Missions National Historic Park, San Antonio, Texas. 168.
  • Minto, J. M., Tan, Q., Lunn, R. J., El Mountassir, G., Guo, H., & Cheng, X. (2018). ‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials, 180, 44–54. https://doi.org/10.1016/j.conbuildmat.2018.05.200 Morse, J. W. (1983). In The kinetics of calcium carbonate dissolution and precipitation. In: Reeder, R.J. (Ed.),
  • Carbonates: Mineralogy and Chemistry (Vol. 11, pp. 227–264). Mineralogic Society of America.
  • Orial, G., Vieweger, Th., & Loubiere, J. F. (2003). Biological Mortars: A Solution For Stone Sculpture Conservation. Art, Biology, and Conservation: Biodeterioration of Works of Art.
  • Pacheco-Torgal, F., Faria, J., & Jalali, S. (2012). Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Construction and Building Materials, 30, 488–494. https://doi.org/10.1016/j.conbuildmat.2011.12.003
  • Palomo, A., Blanco-Varela, M. T., Martinez-Ramirez, S., Puertas, F., & Fortes, C. (2002). Historic Mortars: Characterization and Durability. New Tendencies for Research. 21.
  • Perito, B., Marvasi, M., Barabesi, C., Mastromei, G., Bracci, S., Vendrell, M., & Tiano, P. (2014). A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. Journal of Cultural Heritage, 15(4), 345–351. https://doi.org/10.1016/j.culher.2013.10.001
  • Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of Concrete Using Microorganisms. Materials Journal, 98(1), 3–9.
  • Rivadeneyra, M. A., Delgado, R., Moral, A., Ferrer, M. R., & Ramos-Cormenzana, A. (1994). Precipatation of calcium carbonate by Vibrio spp. From an inland saltern. FEMS Microbiology Ecology, 13(3), 197–204. https://doi.org/10.1111/j.1574-6941.1994.tb00066.x
  • Rodriguez-Navarro, C., Rodriguez-Gallego, M., Ben Chekroun, K., & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Applied and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
  • Schueremans, L., Cizer, Ö., Janssens, E., Serré, G., & Balen, K. V. (2011). Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Construction and Building Materials, 25(12), 4338–4350. https://doi.org/10.1016/j.conbuildmat.2011.01.008
  • Shinano, H. (1972). Studies of marine microorganisms taking part in the precipitation of calcium carbonate. Bull. Jpn. Soc. Sci. Fish, 38,717.
  • Sırt Çıplak, E. (2018). Biological mortar application for micro-crack remediation in stones of travertine monuments [Middle East Technical University]. http://etd.lib.metu.edu.tr/upload/12622634/index.pdf
  • Tiano, P. (1995). Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules. Stud. Conserv. 40 (3), 171–176.
  • Tiano, P., Biagiotti, L., & Mastromei, G. (1999). Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. Journal of Microbiological Methods, 36(1), 139–145.
  • Tiano, P., Cantisani, E., Sutherland, I., & Paget, J. M. (2006). Biomediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage, 7.
  • Veiga, M. R., Velosa, A., & Magalhães, A. (2009). Experimental applications of mortars with pozzolanic additions: Characterization and performance evaluation. Construction and Building Materials, 23(1), 318–327. https://doi.org/10.1016/j.conbuildmat.2007.12.003

BİYOLOJİK HARÇ KULLANIMININ TARİHİ ANITLARIN KALKERLİ TAŞLARINDAKİ MİKRO-ÇATLAKLARI İYİLEŞTİRME POTANSİYELİ

Year 2021, , 223 - 236, 31.12.2021
https://doi.org/10.22520/tubaked2021.24.012

Abstract

İlk çağlardan beri önce insanoğlu daha sonra mimarlar ve inşaat mühendisleri, tarihi anıtların ve binaların yapımında, dayanıklı olmalarından dolayı taşları tercih etmişlerdir. Ancak zaman içerisinde bu taşlar çeşitli biyotik ve abiyotik bozulma faktörleri nedeniyle kaçınılmaz olarak farklı türdeki bozulma süreçlerine maruz kalmışlardır. Kalkerli taşlarda gözlemlenen mikro-çatlaklar bu ayrışma süreçlerinden kaynaklanan yaygın bozulma biçimleridir ve uzun vadede yapının dayanıklılığını etkilemektedirler. Anıtların ve binaların hayatta kalması, büyük ölçüde inşa edildiği malzemelerin korunması ile ilgilidir. Bu amaçla, malzemelerde oluşan mikro-çatlakların iyileştirilmesi için çeşitli müdahale yaklaşımları geliştirilmiştir, ancak hiçbiri hedeflenen iyileştirme performansını tüm yönleriyle yerine getirememiştir. Öte yandan biyomineralizasyon teknikleri ve yaklaşımları üzerine pek çok çalışma ve uygulama bulunabilmesine rağmen biyolojik harç konusu üzerine çok az çalışma yapılmıştır. Bu derleme, tarihi kalkerli taşların mikro-çatlaklarının iyileştirilmesi için biyomineralizasyondan türevlenen, alternatif bir biyolojik tabanlı onarım malzemesi olan biyolojik harcın kullanım potansiyeline dikkat çekmektedir. Biyolojik harçların laboratuvar analizlerinden ve saha gözlemlerinden elde edilen umut verici bulgular özet bir tartışma olarak kısıtlamalar, zorluklar ve taşlardaki mikro-çatlakların iyileştirilmesi ile ilgili gelecekte yapılabilecek çalışmalar ile birlikte verilmektedir.

Project Number

115M188

References

  • Abd El Aal, A. (2017). Identification and characterization of near surface cavities in Tuwaiq Mountain Limestone, Riyadh, KSA, “detection and treatment.” Egyptian Journal of Petroleum, 26(1), 215–223. https://doi.org/10.1016/j.ejpe.2016.04.004
  • Adolphe, J. P., Loubiere, J. F., Paradas, J., & Soleilhavoup, F. (1990). Procédé de traitement biologique d’une surface artificielle.
  • Annamalai, S. K., Arunachalam, K. D., Sathyanarayanan, K. S., & Kumar, V. R. (2013). Characterization and Applications of Biocement Enchanced with Carbon Nanotubes for Improved Remediation on Cracked Concrete Structures. Asian Journal of Chemistry, 25, S143–S146.
  • Barabesi, C., Galizzi, A., Mastromei, G., Rossi, M., Tamburini, E., & Perito, B. (2007). Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization. Journal of Bacteriology, 189(1), 228–235. https://doi.org/10.1128/JB.01450-06
  • Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of Biomineralization of Magnetite by Microbes. Geomicrobiology Journal, 24(6), 465–475. https://doi.org/10.1080/01490450701572259
  • Ben Omar, N., Arias, J. M., & González-Muñoz, M. T. (1997). Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia, 13(2), 161–172.
  • Böke, H., Çizer, Ö., İpekoğlu, B., Uğurlu, E., Şerifaki, K., & Toprak, G. (2008). Characteristics of lime produced from limestone containing diatoms. Construction and Building Materials, 22(5), 866–874. https://doi.org/10.1016/j.conbuildmat.2006.12.010
  • Boquet, E., Boronat, A., & Ramos-Cormenzana, A. (1973). Production of calcite (Calcium carbonate) crystals by soil bacteria is a general phenomenon.
  • Borsoi, G. (2017). Nanostructured lime-based materials for the conservation of calcareous substrates. A+BE | Architecture and the Built Environment.
  • Cartwright, T. A., Vergès-Belmin, V., & International Scientific Committee for Stone (Eds.). (2008). Illustrated glossary on stone deterioration =: Glossaire illustré sur les formes d’altération de la pierre. ICOMOS.
  • Castanier, S. (1987). Microbiogeologie: Processus et modalites de la carbonatogenese bacterienne.
  • Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J.-P. (1999). Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sedimentary Geology, 126(1–4), 9–23. https://doi.org/10.1016/S0037-0738(99)00028-7
  • Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., &
  • Balagurusamy, N. (2019). Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Frontiers in Materials, 6, 126. https://doi.org/10.3389/fmats.2019.00126
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010a). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010b). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • Delgado Rodrigues, J., & Ferreira Pinto, A. P. (2019). Stone consolidation by biomineralisation. Contribution for a new conceptual and practical approach to consolidate soft decayed limestones. Journal of Cultural Heritage, 39, 82–92. https://doi.org/10.1016/j.culher.2019.04.022
  • Doehne, E. F., Price, C. A., & Getty Conservation Institute. (2010). Stone conservation: An overview of current research. Getty Conservation Institute.
  • Drew, G. H. (1911). The action of some denitrifying bacteria in tropical and temperate seas, and bacterial precipitation of calcium carbonate in the sea. J. Mar. Biol. Ass., 9, 142–155.
  • Güçhan, D. N. Ş. (2018). Tarihi Kireçtaşlarını Koruma Müdahalelerinde Uygulamak Üzere Kalsit Üreten Bakterilerle Biyolojik Harç Geliştirilmesi Program Kodu: 1001 Proje No: 115M188 (p. 110). https://app.trdizin.gov.tr/publication/project/detail/TWpBek9UZzQ
  • Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Applied and Environmental Microbiology, 69(8), 4901–4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  • Hansen, E., Doehne, E., Fidler, J., Larson, J., Martin, B., Matteini, M., Rodriguez-Navarro, C., Pardo, E. S., Price, C., de Tagle, A., Teutonico, J. M., & Weiss, N. (2003). A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Studies in Conservation, 48(sup1), 13–25. https://doi.org/10.1179/sic.2003.48.Supplement-1.13
  • Jagadeesha Kumar, B. G., Prabhakara, R., & Pushpa, H. (2013). Effect of Bacterial Calcite Precipitation on Compressive Strength of Mortar Cubes.
  • Jonkers, H. M. (2011). Bacteria-based self-healing concrete. Heron, 56(1/2), 1–12.
  • Jroundi, F., Gonzalez-Muñoz, M. T., & Rodriguez-Navarro, C. (2021). Protection and Consolidation of Stone Heritage by Bacterial Carbonatogenesis. In E. Joseph (Ed.), Microorganisms in the Deterioration and Preservation of Cultural Heritage (pp. 281–299). Springer International Publishing. https://doi.org/10.1007/978-3-030-69411-1_13
  • Klisińska-Kopacz, A., Tišlova, R., Adamski, G., & Kozłowski, R. (2010). Pore structure of historic and repair Roman cement mortars to establish their compatibility. Journal of Cultural Heritage, 11(4), 404–410. https://doi.org/10.1016/j.culher.2010.03.002
  • Knorre, H., & Krumbein, K. E. (2000). Bacterial calcification. 25–31.
  • Le Métayer-Levrel, G., Castanier, S., Orial, G., Loubière, J.-F., & Perthuisot, J.-P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology, 126(1–4), 25–34. https://doi.org/10.1016/S0037-0738(99)00029-9
  • Lewin, S. Z., & Baer, N. S. (1974). Rationale of the Barium Hydroxide-Urea Treatment of Decayed Stone. 13.
  • Lowenstan, H. A., & Weiner, S. (1989). In Biomineralization. Oxford University Press.
  • McNabb, K. D. (2012). Evaluation of Consolidation Treatments for the San José Convento Column, San Antonio Missions National Historic Park, San Antonio, Texas. 168.
  • Minto, J. M., Tan, Q., Lunn, R. J., El Mountassir, G., Guo, H., & Cheng, X. (2018). ‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials, 180, 44–54. https://doi.org/10.1016/j.conbuildmat.2018.05.200 Morse, J. W. (1983). In The kinetics of calcium carbonate dissolution and precipitation. In: Reeder, R.J. (Ed.),
  • Carbonates: Mineralogy and Chemistry (Vol. 11, pp. 227–264). Mineralogic Society of America.
  • Orial, G., Vieweger, Th., & Loubiere, J. F. (2003). Biological Mortars: A Solution For Stone Sculpture Conservation. Art, Biology, and Conservation: Biodeterioration of Works of Art.
  • Pacheco-Torgal, F., Faria, J., & Jalali, S. (2012). Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Construction and Building Materials, 30, 488–494. https://doi.org/10.1016/j.conbuildmat.2011.12.003
  • Palomo, A., Blanco-Varela, M. T., Martinez-Ramirez, S., Puertas, F., & Fortes, C. (2002). Historic Mortars: Characterization and Durability. New Tendencies for Research. 21.
  • Perito, B., Marvasi, M., Barabesi, C., Mastromei, G., Bracci, S., Vendrell, M., & Tiano, P. (2014). A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. Journal of Cultural Heritage, 15(4), 345–351. https://doi.org/10.1016/j.culher.2013.10.001
  • Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of Concrete Using Microorganisms. Materials Journal, 98(1), 3–9.
  • Rivadeneyra, M. A., Delgado, R., Moral, A., Ferrer, M. R., & Ramos-Cormenzana, A. (1994). Precipatation of calcium carbonate by Vibrio spp. From an inland saltern. FEMS Microbiology Ecology, 13(3), 197–204. https://doi.org/10.1111/j.1574-6941.1994.tb00066.x
  • Rodriguez-Navarro, C., Rodriguez-Gallego, M., Ben Chekroun, K., & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Applied and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
  • Schueremans, L., Cizer, Ö., Janssens, E., Serré, G., & Balen, K. V. (2011). Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Construction and Building Materials, 25(12), 4338–4350. https://doi.org/10.1016/j.conbuildmat.2011.01.008
  • Shinano, H. (1972). Studies of marine microorganisms taking part in the precipitation of calcium carbonate. Bull. Jpn. Soc. Sci. Fish, 38,717.
  • Sırt Çıplak, E. (2018). Biological mortar application for micro-crack remediation in stones of travertine monuments [Middle East Technical University]. http://etd.lib.metu.edu.tr/upload/12622634/index.pdf
  • Tiano, P. (1995). Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules. Stud. Conserv. 40 (3), 171–176.
  • Tiano, P., Biagiotti, L., & Mastromei, G. (1999). Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. Journal of Microbiological Methods, 36(1), 139–145.
  • Tiano, P., Cantisani, E., Sutherland, I., & Paget, J. M. (2006). Biomediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage, 7.
  • Veiga, M. R., Velosa, A., & Magalhães, A. (2009). Experimental applications of mortars with pozzolanic additions: Characterization and performance evaluation. Construction and Building Materials, 23(1), 318–327. https://doi.org/10.1016/j.conbuildmat.2007.12.003
There are 47 citations in total.

Details

Primary Language English
Subjects Cultural Studies
Journal Section Research Article
Authors

Elif Sırt Çıplak 0000-0002-6800-6236

Kıvanç Bilecen This is me 0000-0002-6254-3516

Kiraz Göze Akoğlu This is me 0000-0003-3645-1594

Neriman Şahin Güçhan 0000-0001-7841-9344

Project Number 115M188
Publication Date December 31, 2021
Submission Date November 25, 2021
Published in Issue Year 2021

Cite

APA Sırt Çıplak, E., Bilecen, K., Akoğlu, K. G., Şahin Güçhan, N. (2021). POTENTIAL OF BIOLOGICAL MORTAR FOR MICRO-CRACK REMEDIATION OF CALCAREOUS STONES IN HISTORICAL MONUMENTS. TÜBA-KED Türkiye Bilimler Akademisi Kültür Envanteri Dergisi(24), 223-236. https://doi.org/10.22520/tubaked2021.24.012

Bu sistemin içeriği ve TÜBA-KED'de yayınlanan tüm makaleler "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0" altında lisanslanmıştır.

by-nc-nd.png