Research Article
BibTex RIS Cite

Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi

Year 2024, , 71 - 78, 29.04.2024
https://doi.org/10.25048/tudod.1414682

Abstract

Amaç: Glukagon benzeri peptid-1 (GLP-1), bağırsak L hücrelerinde proglukagondan sentezlenen bir inkretin hormondur. Diyabetes
mellitus tedavisinde yaygın olarak kullanılan GLP-1 analoglarının antidiyabetik etkilerinin yanı sıra nöroplastisiteyi sağlayarak
nöroprotektif, prokognitif ve diyabete bağlı komplikasyonların önlenmesinde etkili olduğu bildirilmektedir. Üriner disfonksiyonlar
diyabet ve obezitede sıklıkla gözlenmektedir. Kan şekerini düşürücü etkisinden bağımsız olarak GLP-1 reseptör agonistlerinin direkt
mesane düz kasının üzerindeki etkilerinin belirlenmesi bu hasta gruplarında aşırı aktif mesane gelişiminin önlenmesinde yararlı etkiler
ortaya çıkarabilir. Bu çalışmanın amacı gastrointestinal düz kas fonksiyonları üzerine düzenleyici etkileri bildirilen GLP-1 reseptör
agonistinin mesane düz kas kasılma ve gevşeme yanıtları üzerine olan etkisini incelemektir.
Gereç ve Yöntemler: Çalışmada 300-325 g ağırlığında erkek yetişkin Wistar Albino cinsi sıçanlar kullanılmıştır (n=7). Detrüsör kas
şeritlerinin kasılma ve gevşeme yanıtlarını incelemek için organ banyosu sistemi kullanılmıştır. Mukozası sağlam kas şeritleri izole organ
banyosuna asılarak izometrik kasılma yanıtı karbakol ( 3×10-6 M) ile oluşturulmuştur. Karbakolle kasılmış düz kas şeritlerine GLP-1
reseptör agonisti olarak liraglutid kümülatif (10-8-10-2 M) olarak uygulanarak düz kas kasılma yanıtlarındaki değişim belirlenmiştir.
Gevşeme yanıtları incelemek için izoproterenol (10-8-10-2 M) kullanılmıştır. Karbakolle kasılmış düz kas şeritlerine kümülatif olarak
liraglutid uygulanarak gevşeme yanıtları kaydedilmiştir. Ayrıca GLP-1’in etki mekanizmasını tespit edebilmek için organ banyosuna
nöronal nitrik oksit sentaz (nNOS) inhibitörü Nω-Nitro-L-arginine (L-NNA) (10 mM) eklenerek gevşeme yanıtları üzerine etkisi
değerlendirilmiştir. Sonuçların istatistiksel değerlendirmesi Mann-Whitney U ve Kruskal Wallis testleri kullanılarak yapılmıştır.
Bulgular: GLP-1 reseptör agonisti liraglutid 3×10-6 M dozunda karbakolle oluşan kasılma yanıtında istatistiksel olarak anlamlı bir
değişime neden olmamıştır (p=0,768). Önceden 3×10-6 M karbakol ile kasılmış düz kas şeritlerine kümülatif olarak uygulana liraglutid
(10-4 ve 10-2 M dozlarında) izoprotrenol ile benzer gevşeme yanıtına neden olmuştur. İzole organ banyosu ortamına LNNA eklenmesi,
liraglutid bağımlı gevşeme yanıtında istatistiksel olarak anlamlı azalmaya neden olmuştur (p=0,019, p=0,033).
Sonuç: Çalışmanın sonuçları GLP-1’in büyük olasılıkla mesane düz kas duvarında GLP-1 reseptörü aracılığıyla gevşemeye neden olabildiğini
göstermektedir. İn vitro koşullarda ve sağlıklı detrüsör kas dokusundan elde edilen veriler, liraglutid ile oluşan gevşeme yanıtının
mekanizmaları arasında nitrik oksitin rol oynadığını düşündürmektedir. Bu sonuçların aşırı aktif mesane modellerinde ve in vivo koşullarda
daha ileri çalışmalarda desteklenmesi gerekmektedir.

Ethical Statement

Çalışma Zonguldak Bülent Ecevit Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu (etik onay numarası: 2022-15-02/06).

Supporting Institution

Tübitak

Project Number

1919B012109907

Thanks

Çalışma 1919B012109907 başvuru nolu TÜBİTAK 2209A programı kapsamında desteklenerek yapılmıştır

References

  • 1. Hellström PM, Smithson A, Stowell G, Greene S, Kenny E, Damico C, Leone-Bay A, Baughman R, Grant M, Richardson P. Receptor-mediated inhibition of small bowel migrating complex by GLP-1 analog ROSE-010 delivered via pulmonary and systemic routes in the conscious rat. Regul Pept 2012; 179(1- 3):71-6.
  • 2. Weir GC, Mojsov S, Hendrick GK, Habener JF. Glucagon like peptide I (7-37) actions on endocrine pancreas. Diabetes 1989; 38(3):338-42.
  • 3. Yan L, Tang Q, Quan X, Ren H, Chen W, Xia H, Luo H. Effects of exendin-4 on colonic motility in rats and its underlying mechanism. Neurogastroenterol Motil 2019; 31(2):e13482.
  • 4. Hellström PM, Näslund E, Edholm T, Schmidt PT, Kristensen J, Theodorsson E, Holst JJ, Efendic S. GLP-1 suppresses gastrointestinal motility and inhibits the migrating motor complex in healthy subjects and patients with irritable bowel syndrome. NeurogastroenterolMotil 2008; 20(6):649-59.
  • 5. Gusmão-Nascimento JW, Nunes Cruz DM, Almeida Gama L, Luz Alves WD, Machado MPR, Corá LA, Américo MF. Liraglutide modulates morpho-functional and inflammatory gastrointestinal responses in rats. Eur J Clin Invest. 2024; 54(2):e14112.
  • 6. Bozkurt A, Näslund E, Holst JJ, et al. GLP-1 and GLP-2 act in concert to inhibit fasted, but not fed, small bowel motility in the rat. Regul Pept 2002; 107: 129–135.
  • 7. Wegeberg AL, Hansen CS, Farmer AD, Karmisholt JS, Drewes AM, Jakobsen PE, Brock B, Brock C. Liraglutide accelerates colonic transit in people with type 1 diabetes and polyneuropathy: A randomised, double-blind, placebo-controlled trial. United European Gastroenterol J 2020;8(6):695-704.
  • 8. Philyppov IB, Sotkis GV, Danshyna AO, Yelyashov SI, Sharopov BR, Shuba YM. Impairment of urinary bladder mechanical properties in rat model of type 2 diabetes. Neurourol Urodyn 2022; 41(8):1670-1678.
  • 9. Vladimirova IA, Philyppov IB, Sotkis GV, Kulieva EM, Shuba YY, Gulak KL, Skryma R, Prevarskaya N, Shuba YM. Impairment of cholinergic bladder contractility in rat model of type I diabetes complicated by cystitis: Contribution of neurotransmitter- degrading ectoenzymes. Eur J Pharmacol 2019; 860:172529.
  • 10. Klee NS, Moreland RS, Kendig DM. Detrusor contractility to parasympathetic mediators is differentially altered in the compensated and decompensated states of diabetic bladder dysfunction. Am J Physiol Renal Physiol 2019; 317(2):F388-F398.
  • 11. Peyronnet B, Mironska E, Chapple C, Cardozo L, Oelke M, Dmochowski R, Cornu JN. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. European Urology 2019; 75(6); 988–1000.
  • 12. Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon- like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. KidneyInt 2023; S0085-2538(23)00756-1.
  • 13. Eissa RG, Eissa NG, Eissa RA, Diab NH, Abdelshafi NA, Shaheen MA, Elsabahy M, Hammad SK. Oral proniosomalamitriptyline and liraglutide for management of diabetic neuropathy: Exceptional control over hyperglycemia and neuropathic pain. Int J Pharm 2023;647:123549.
  • 14. Li PC, Liu LF, Jou MJ, Wang HK. The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice. BMC Neurosci 2016; 17(1):37.
  • 15. Turan İ, Erdem S, Ergenç M, Sayan Özaçmak H. The Effects of 1,1-Dimethylbiguanide Hydrochloride (Metformin) on Detrusor Muscle Contractile Response in Ovariectomized Female Rats. Turk J Diab Obes 2022;6(2):97-103.
  • 16. Lim I, Chess-Williams R. Mirabegron attenuates porcine ureteral contractility via α1-adrenoceptor antagonism. Naunyn Schmiedebergs Arch Pharmacol. 2022; 395(7):839-847.
  • 17. Hashim H, Abrams P. Overactive bladder: an update. Curr Opin Urol 2007;17(4):231-6.
  • 18. Neu S, Matta R, Locke JA, Troke N, Tadrous M, Saskin R, Rebullar K, Nam R, Herschorn S. The Use of Metformin in Overactive Bladder: A Retrospective Nested Case-control, Population- based Analysis. Urology 2023; S0090-4295(23)00871-3.
  • 19. Daneshgari F, Liu G, Birder L, Hanna-Mitchell AT, Chacko S. Diabetic bladder dysfunction: current translational knowledge. J Urol 2009;182(6 Suppl):S18-26.
  • 20. .Kaplan SA, Te AE, Blaivas JG. Urodynamic findings in patients with diabetic cystopathy. J Urol. 1995 Feb;153(2):342-4.
  • 21. Chiu AF, Huang MH, Wang CC, Kuo HC. Higher glycosylated hemoglobin levels increase the risk of overactive bladder syndrome in patients with type 2 diabetes mellitus. Int J Urol 2012;19(11):995-1001.
  • 22. Deli G, Bosnyak E, Pusch G, Komoly S, Feher G. Diabetic neuropathies: diagnosis and management. Neuroendocrinology 2013; 98(4):267-80.
  • 23. Evcim AS, Micili SC, Karaman M, Erbil G, Guneli E, Gidener S, Gumustekin M. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin- induced Diabetic Rats. Basic Clin Pharmacol Toxicol 2015; 116(6):476-84.
  • 24. Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol. 2002;22(3):133-45.
  • 25. Müller T D, Finan B, Bloom S R, D’Alessio D, Drucker D J, Flatt P R, Fritsche A, Gribble F, Grill H J, Habener J F, Holst J J, Langhans W, Meier,J J, Nauck M A, Perez-Tilve D, Pocai A, Reimann F, Sandoval D A, Schwartz T W, Tschöp M H. Glucagon- like peptide 1 (GLP-1). Mol Metab 2019;30: 72-130.
  • 26. Cessario J, Pierre-Louis V, Wahl J, Li Z. Empagliflozin, alone or in combination with liraglutide, limits cell death in vitro: role of oxidative stress and nitric oxide. Pharmacol Rep 2021;73(3):858-867.
  • 27. Turan İ, Sağlam C, Erdem S, Sayan Özaçmak H. Ovariektomize Sıçanlarda Liraglutid’in Kalp Fonksiyonları Üzerine Etkisi. Turk J Diab Obes. 2022;6:1–9.
  • 28. Ferhatbegović L, Mršić D, Macić-Džanković A. The benefits of GLP1 receptors in cardiovascular diseases. Front Clin Diabetes Healthcare. 2023; 4: 1-8
  • 29. Liu Y, Zhu D, Dong G, Zeng Y, Jiang P, Xiao Y. Liverparaoxonase 3 expression and the effect of liraglutide treatment in a rat model of diabetes. Adv Clin Exp Med 2021;30(2):157-163.
  • 30. Tolessa T, Gutniak M, Holst JJ, Efendic S, Hellström PM. Glucagon- like peptide-1 retards gastric emptying and small bowel transit in therat: effect mediated through central or enteric nervous mechanisms. Dig Dis Sci 1998;43(10):2284-90.
  • 31. Bucinskaite V, Tolessa T, Pedersen J, Rydqvist B, Zerihun L, Holst JJ, Hellström PM. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil 2009; 21(9):978-e78.
  • 32. Imeryüz N, Yeğen BC, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4):G920-7.
  • 33. Näslund E, Bogefors J, Skogar S, Grybäck P, Jacobsson H, Holst JJ, Hellström PM. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol. 1999;277(3):R910-6.
  • 34. Hellström PM, Hein J, Bytzer P, Björnssön E, Kristensen J, Schambye H. Clinicaltrial: theglucagon-like peptide-1 analogue ROSE-010 for management of acutepain in patients with irritable bowel syndrome: a randomized, placebo-controlled, double-blind study. Aliment Pharmacol Ther 2009;29(2):198- 206.
  • 35. Hotta Y, Takahashi S, Tokoro M, Naiki-Ito A, Maeda K, Kawata R, Kataoka T, Ohta Y, Hamakawa T, Takahashi S, Yasui T, Kimura K. Anagliptin, a dipeptidyl peptidase-4 inhibitor, improved bladder function and hemodynamics in rats with bilateral internal iliac artery ligation. Neurourol Urodyn 2020; 39(7):1922-1929.

Effect of Glucagon-Like Peptide-1 Receptor Agonist Liraglutide on Rat Detrusor Muscle Contraction Response

Year 2024, , 71 - 78, 29.04.2024
https://doi.org/10.25048/tudod.1414682

Abstract

Aim: Glucagon-like peptide-1 (GLP-1) is an incretin hormone synthesized from proglucagon in intestinal L cells. GLP-1 analogs, which
are widely used in the treatment of diabetes mellitus, are reported to be effective in neuroprotective, procognitive and prevention of
diabetes-related complications by providing neuroplasticity as well as antidiabetic effects. Urinary dysfunctions are frequently observed
in diabetes and obesity. Determination of the effects of GLP-1 receptor agonists directly on bladder smooth muscle, independent of
their blood glucose lowering effect, may reveal beneficial effects in preventing the development of overactive bladder in these patient
groups. The aim of this study was to investigate the effect of GLP-1 receptor agonist, which has been reported to have regulatory effects
on gastrointestinal smooth muscle functions, on bladder smooth muscle contraction and relaxation responses.
Material and Methods: Male adult Wistar Albino rats weighing 300-325 g were used in the study (n=7). An organ bath system was used
to examine the contraction and relaxation responses of detrusor muscle strips. Muscle strips with intact mucosa weres uspended in an
isolated organ bath and isometric contraction response was induced with carbachol (3×10-6 M). Liraglutide as GLP-1 receptor agonist
was applied cumulatively (10-8-10-2 M) to carbachol-contracted smooth muscle strips and the change in smooth muscle contraction
responses was determined. Isoproterenol (10-8-10-2 M) was used to examine relaxation responses. Relaxation responses were recorded
by cumulatively applying liraglutide to strips of smooth muscle previously contracted with carbachol. In addition, in order to determine
the mechanism of action of GLP-1, neuronal nitric oxide synthase (nNOS) inhibitör Nω-Nitro-L-arginine (L-NNA) (10 mM) was added
to the organ bath and its effect on relaxation responses was evaluated. Statistical evaluation of the results was performed using Mann-
Whitney U and Kruskal Wallis tests.
Results: The GLP-1 receptor agonist liraglutide did not cause a statistically significant change in the contractile response to carbachol
at a dose of 3×10-6 M (p=0.768). Liraglutide (at doses of 10-4 and 10-2 M) applied cumulatively to smooth muscle strips previously
contracted with 3×10-6 M carbachol caused a similar relaxation response as isoprotrenol. Addition of LNNA to the isolated organ bath
medium caused a statistically significant decrease in the liraglutide-dependent relaxation response (p=0.019, p=0.033).
Conclusion: The results of the study show that GLP-1 can cause relaxation of the bladder smooth muscle wall, most likely through the
GLP-1 receptor. Data obtained in vitro and from healthy detrusor muscle tissue suggest that nitric oxide plays a role in the mechanisms
of the relaxation response induced by liraglutide. These results need to be supported in further studies in overactive bladder models and
in vivo conditions.

Project Number

1919B012109907

References

  • 1. Hellström PM, Smithson A, Stowell G, Greene S, Kenny E, Damico C, Leone-Bay A, Baughman R, Grant M, Richardson P. Receptor-mediated inhibition of small bowel migrating complex by GLP-1 analog ROSE-010 delivered via pulmonary and systemic routes in the conscious rat. Regul Pept 2012; 179(1- 3):71-6.
  • 2. Weir GC, Mojsov S, Hendrick GK, Habener JF. Glucagon like peptide I (7-37) actions on endocrine pancreas. Diabetes 1989; 38(3):338-42.
  • 3. Yan L, Tang Q, Quan X, Ren H, Chen W, Xia H, Luo H. Effects of exendin-4 on colonic motility in rats and its underlying mechanism. Neurogastroenterol Motil 2019; 31(2):e13482.
  • 4. Hellström PM, Näslund E, Edholm T, Schmidt PT, Kristensen J, Theodorsson E, Holst JJ, Efendic S. GLP-1 suppresses gastrointestinal motility and inhibits the migrating motor complex in healthy subjects and patients with irritable bowel syndrome. NeurogastroenterolMotil 2008; 20(6):649-59.
  • 5. Gusmão-Nascimento JW, Nunes Cruz DM, Almeida Gama L, Luz Alves WD, Machado MPR, Corá LA, Américo MF. Liraglutide modulates morpho-functional and inflammatory gastrointestinal responses in rats. Eur J Clin Invest. 2024; 54(2):e14112.
  • 6. Bozkurt A, Näslund E, Holst JJ, et al. GLP-1 and GLP-2 act in concert to inhibit fasted, but not fed, small bowel motility in the rat. Regul Pept 2002; 107: 129–135.
  • 7. Wegeberg AL, Hansen CS, Farmer AD, Karmisholt JS, Drewes AM, Jakobsen PE, Brock B, Brock C. Liraglutide accelerates colonic transit in people with type 1 diabetes and polyneuropathy: A randomised, double-blind, placebo-controlled trial. United European Gastroenterol J 2020;8(6):695-704.
  • 8. Philyppov IB, Sotkis GV, Danshyna AO, Yelyashov SI, Sharopov BR, Shuba YM. Impairment of urinary bladder mechanical properties in rat model of type 2 diabetes. Neurourol Urodyn 2022; 41(8):1670-1678.
  • 9. Vladimirova IA, Philyppov IB, Sotkis GV, Kulieva EM, Shuba YY, Gulak KL, Skryma R, Prevarskaya N, Shuba YM. Impairment of cholinergic bladder contractility in rat model of type I diabetes complicated by cystitis: Contribution of neurotransmitter- degrading ectoenzymes. Eur J Pharmacol 2019; 860:172529.
  • 10. Klee NS, Moreland RS, Kendig DM. Detrusor contractility to parasympathetic mediators is differentially altered in the compensated and decompensated states of diabetic bladder dysfunction. Am J Physiol Renal Physiol 2019; 317(2):F388-F398.
  • 11. Peyronnet B, Mironska E, Chapple C, Cardozo L, Oelke M, Dmochowski R, Cornu JN. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. European Urology 2019; 75(6); 988–1000.
  • 12. Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon- like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. KidneyInt 2023; S0085-2538(23)00756-1.
  • 13. Eissa RG, Eissa NG, Eissa RA, Diab NH, Abdelshafi NA, Shaheen MA, Elsabahy M, Hammad SK. Oral proniosomalamitriptyline and liraglutide for management of diabetic neuropathy: Exceptional control over hyperglycemia and neuropathic pain. Int J Pharm 2023;647:123549.
  • 14. Li PC, Liu LF, Jou MJ, Wang HK. The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice. BMC Neurosci 2016; 17(1):37.
  • 15. Turan İ, Erdem S, Ergenç M, Sayan Özaçmak H. The Effects of 1,1-Dimethylbiguanide Hydrochloride (Metformin) on Detrusor Muscle Contractile Response in Ovariectomized Female Rats. Turk J Diab Obes 2022;6(2):97-103.
  • 16. Lim I, Chess-Williams R. Mirabegron attenuates porcine ureteral contractility via α1-adrenoceptor antagonism. Naunyn Schmiedebergs Arch Pharmacol. 2022; 395(7):839-847.
  • 17. Hashim H, Abrams P. Overactive bladder: an update. Curr Opin Urol 2007;17(4):231-6.
  • 18. Neu S, Matta R, Locke JA, Troke N, Tadrous M, Saskin R, Rebullar K, Nam R, Herschorn S. The Use of Metformin in Overactive Bladder: A Retrospective Nested Case-control, Population- based Analysis. Urology 2023; S0090-4295(23)00871-3.
  • 19. Daneshgari F, Liu G, Birder L, Hanna-Mitchell AT, Chacko S. Diabetic bladder dysfunction: current translational knowledge. J Urol 2009;182(6 Suppl):S18-26.
  • 20. .Kaplan SA, Te AE, Blaivas JG. Urodynamic findings in patients with diabetic cystopathy. J Urol. 1995 Feb;153(2):342-4.
  • 21. Chiu AF, Huang MH, Wang CC, Kuo HC. Higher glycosylated hemoglobin levels increase the risk of overactive bladder syndrome in patients with type 2 diabetes mellitus. Int J Urol 2012;19(11):995-1001.
  • 22. Deli G, Bosnyak E, Pusch G, Komoly S, Feher G. Diabetic neuropathies: diagnosis and management. Neuroendocrinology 2013; 98(4):267-80.
  • 23. Evcim AS, Micili SC, Karaman M, Erbil G, Guneli E, Gidener S, Gumustekin M. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin- induced Diabetic Rats. Basic Clin Pharmacol Toxicol 2015; 116(6):476-84.
  • 24. Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol. 2002;22(3):133-45.
  • 25. Müller T D, Finan B, Bloom S R, D’Alessio D, Drucker D J, Flatt P R, Fritsche A, Gribble F, Grill H J, Habener J F, Holst J J, Langhans W, Meier,J J, Nauck M A, Perez-Tilve D, Pocai A, Reimann F, Sandoval D A, Schwartz T W, Tschöp M H. Glucagon- like peptide 1 (GLP-1). Mol Metab 2019;30: 72-130.
  • 26. Cessario J, Pierre-Louis V, Wahl J, Li Z. Empagliflozin, alone or in combination with liraglutide, limits cell death in vitro: role of oxidative stress and nitric oxide. Pharmacol Rep 2021;73(3):858-867.
  • 27. Turan İ, Sağlam C, Erdem S, Sayan Özaçmak H. Ovariektomize Sıçanlarda Liraglutid’in Kalp Fonksiyonları Üzerine Etkisi. Turk J Diab Obes. 2022;6:1–9.
  • 28. Ferhatbegović L, Mršić D, Macić-Džanković A. The benefits of GLP1 receptors in cardiovascular diseases. Front Clin Diabetes Healthcare. 2023; 4: 1-8
  • 29. Liu Y, Zhu D, Dong G, Zeng Y, Jiang P, Xiao Y. Liverparaoxonase 3 expression and the effect of liraglutide treatment in a rat model of diabetes. Adv Clin Exp Med 2021;30(2):157-163.
  • 30. Tolessa T, Gutniak M, Holst JJ, Efendic S, Hellström PM. Glucagon- like peptide-1 retards gastric emptying and small bowel transit in therat: effect mediated through central or enteric nervous mechanisms. Dig Dis Sci 1998;43(10):2284-90.
  • 31. Bucinskaite V, Tolessa T, Pedersen J, Rydqvist B, Zerihun L, Holst JJ, Hellström PM. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil 2009; 21(9):978-e78.
  • 32. Imeryüz N, Yeğen BC, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4):G920-7.
  • 33. Näslund E, Bogefors J, Skogar S, Grybäck P, Jacobsson H, Holst JJ, Hellström PM. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol. 1999;277(3):R910-6.
  • 34. Hellström PM, Hein J, Bytzer P, Björnssön E, Kristensen J, Schambye H. Clinicaltrial: theglucagon-like peptide-1 analogue ROSE-010 for management of acutepain in patients with irritable bowel syndrome: a randomized, placebo-controlled, double-blind study. Aliment Pharmacol Ther 2009;29(2):198- 206.
  • 35. Hotta Y, Takahashi S, Tokoro M, Naiki-Ito A, Maeda K, Kawata R, Kataoka T, Ohta Y, Hamakawa T, Takahashi S, Yasui T, Kimura K. Anagliptin, a dipeptidyl peptidase-4 inhibitor, improved bladder function and hemodynamics in rats with bilateral internal iliac artery ligation. Neurourol Urodyn 2020; 39(7):1922-1929.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Physiopathology
Journal Section Research Article
Authors

Ali Deniz Çölgeçen 0000-0002-0712-5872

Hale Sayan Özaçmak 0000-0002-3564-0468

Project Number 1919B012109907
Publication Date April 29, 2024
Submission Date January 4, 2024
Acceptance Date April 25, 2024
Published in Issue Year 2024

Cite

APA Çölgeçen, A. D., & Sayan Özaçmak, H. (2024). Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi. Turkish Journal of Diabetes and Obesity, 8(1), 71-78. https://doi.org/10.25048/tudod.1414682
AMA Çölgeçen AD, Sayan Özaçmak H. Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi. Turk J Diab Obes. April 2024;8(1):71-78. doi:10.25048/tudod.1414682
Chicago Çölgeçen, Ali Deniz, and Hale Sayan Özaçmak. “Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi”. Turkish Journal of Diabetes and Obesity 8, no. 1 (April 2024): 71-78. https://doi.org/10.25048/tudod.1414682.
EndNote Çölgeçen AD, Sayan Özaçmak H (April 1, 2024) Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi. Turkish Journal of Diabetes and Obesity 8 1 71–78.
IEEE A. D. Çölgeçen and H. Sayan Özaçmak, “Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi”, Turk J Diab Obes, vol. 8, no. 1, pp. 71–78, 2024, doi: 10.25048/tudod.1414682.
ISNAD Çölgeçen, Ali Deniz - Sayan Özaçmak, Hale. “Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi”. Turkish Journal of Diabetes and Obesity 8/1 (April 2024), 71-78. https://doi.org/10.25048/tudod.1414682.
JAMA Çölgeçen AD, Sayan Özaçmak H. Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi. Turk J Diab Obes. 2024;8:71–78.
MLA Çölgeçen, Ali Deniz and Hale Sayan Özaçmak. “Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi”. Turkish Journal of Diabetes and Obesity, vol. 8, no. 1, 2024, pp. 71-78, doi:10.25048/tudod.1414682.
Vancouver Çölgeçen AD, Sayan Özaçmak H. Glukagon Benzeri Peptit -1 Reseptör Agonisti Liraglutidin Sıçan Detrüsor Kas Kasılma Yanıtı Üzerine Etkisi. Turk J Diab Obes. 2024;8(1):71-8.

Zonguldak Bülent Ecevit Üniversitesi Obezite ve Diyabet Uygulama ve Araştırma Merkezi’nin bilimsel yayım organıdır.

Web: https://obdm.beun.edu.tr/  Twitter: https://twitter.com/obezite_diyabet     Instagram: https://www.instagram.com/zbeuobezitediyabet/