Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 3, 142 - 153, 01.07.2020
https://doi.org/10.31127/tuje.644597

Abstract

References

  • Abbasian, J., Rehmat, A., Leppin, D., & Banerjee, D. D. (1990). Desulfurization of Fuels with Calcium-based Sorbents. Fuel Processing Technology, 25, 1–15.
  • Bakker, W. J. W., Kapteijn, F., & Moulijn, J. A. (2003). A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production Conceptual process application to coal gas cleaning. Chemical Engineering Journal, 96, 223–235. https://doi.org/10.1016/j.cej.2003.08.022
  • Cheah, S., Carpenter, D. L., & Magrini-bair, K. A. (2009). Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of. Energy & Fuels, 23, 5291–5307. https://doi.org/10.1021/ef900714q
  • Chutichai, B., Patcharavorachot, Y., & Assabumrungrat, S. (2015). Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production. Energy, 82, 406–413. https://doi.org/10.1016/j.energy.2015.01.051
  • Delgado, J., & Aznar, P. M. (1997). Biomass Gasification with Steam in Fluidized Bed : Effectiveness of CaO , MgO , and CaO - MgO for Hot Raw Gas Cleaning. Ind. Eng. Chem. Res., 35, 1535–1543. https://doi.org/10.1021/ie960273w
  • Fuertes, A.B., Velasco, G., Alvarez, T., Fernandez, M.J. (1995). Sulfation of dolomite particles at high CO2 partial pressures, Termochim. Acta, 254, 63.
  • Gu, J. M., & Ding, D. R. (1996). A study on the characteristics of adsorption for Zn2+, Cu2+, Pb2+ ions onto peat and lignite. Environmental Chemistry, 15, 343–346.
  • Gupta, R. P., & Brien, W. S. O. (2000). Desulfurization of Hot Syngas Containing Hydrogen Chloride Vapors Using Zinc Titanate Sorbents. Industrial & Engineering Chemistry Research, 39, 610–619. https://doi.org/10.1021/ie990533k
  • Husmann, M., Zuber, C., Maitz, V., Kienberger, T., & Hochenauer, C. (2016). Comparison of dolomite and lime as sorbents for in-situ H2S removal with respect to gasification parameters in biomass gasification. Fuel,181, 131–138. https://doi.org/10.1016/j.fuel.2016.04.124
  • Kalinci, Y., Hepbasli, A., & Dincer, I. (2009). Biomassbased hydrogen production : A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817. https://doi.org/10.1016/j.ijhydene.2009.08.078
  • Lee, J., & Feng, B. (2012). A thermodynamic study of the removal of HCl and H2S from syngas. Chemical Engineering Science, 6(1), 67–83. https://doi.org/10.1007/s11705-011-1162-4
  • Leppdahti, J., & Koljonen, T. (1995). Review Nitrogen evolution from coal , peat and wood during gasification : Literature review. Fuel Processing Technology, 43, 1–45.
  • Li, Q., Song, G., Xiao, J., Sun, T., & Yang, K. (2018). Exergy analysis of biomass staged-gasification for hydrogen-rich syngas. International Journal of Hydrogen Energy, 44(5), 2569–2579. https://doi.org/10.1016/j.ijhydene.2018.11.227.
  • Puigjaner, L. (2011). Syngas from Waste: Emerging Technologies Green Energy and Technology. Springer Science & Business Media, 127.
  • Mahishi, M. R., & Goswami, D. Y. (2007). Thermodynamic optimization of biomass gasifier for hydrogen production. International Journal of Hydrogen Energy, 32, 3831–3840. https://doi.org/10.1016/j.ijhydene.2007.05.018
  • Mazlumoğlu, H., & Gülaboğlu, M. (2017). Effect of Temperature on SO2 Absorption. Journal of the Turkish Chemical Society B, 1(1), 135–48.
  • Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield - A review. Renewable Energy, 66, 570–579. https://doi.org/10.1016/j.renene.2013.12.025.
  • Rubiera, F., Fuertes, A.B., Pis, J.J., Artos, V., & Marbàn, G. (1991). Changes in textural properties of limestone and dolomite during calcinations, Termochim. Acta, 179, 125.
  • Senthilkumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., & Sivanesan, S. (2011). Removal of copper ( II ) ions from aqueous solution by adsorption using cashew nut shell. Desalination, 266(1–3), 63–71. https://doi.org/10.1016/j.desal.2010.08.003
  • Su, Y., Han, R., Gao, J., Wei, S., Sun, F., & Zhao, G. (2019). Novel method for regeneration/reactivation of spent dolomite-based sorbents from calcium looping cycles. Chemical Engineering Journal, 360(August 2018), 148–156. https://doi.org/10.1016/j.cej.2018.11.095
  • Valverde, J. M., Perejon, A., Medina, S., & Perezmaqueda, L. A. (2015). Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis. Physical Chemistry Chemical Physics, 17,30162–30176. https://doi.org/10.1039/c5cp05596b
  • Wauton, I., & Ogbeide, S. E. (2019). Characterization of pyrolytic bio-oil from water hyacinth (Eichhornia crassipes ) pyrolysis in a fixed bed reactor. Biofuels, 0(0), 1–6. https://doi.org/10.1080/17597269.2018.1558838.
  • Westmoreland, P.R., Gibson, J.B. & Harrison, D.P. (1977). Comparative kinetics of high-temperature reaction between hydrogen sulfide and selected metal oxides. Environmental Science & Technology. 11(5), 488-491.
  • Wu, J., Liu, D., Zhou, W., Liu, Q., & Huang, Y. (2018). Status of Coal Gas H2S Removal. In High-Temperature H2S Removal from IGCC Coarse Gas (pp. 21–55). Springer Singapore.
  • Yin, H., & Yip, A. C. K. (2017). A Review on the Production and Purification of Biomass-Derived Hydrogen Using Emerging Membrane Technologies. Journal of Catalysts and Catalyzed Reactions, 7(297), 1–31. https://doi.org/10.3390/catal7100297

DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT

Year 2020, Volume: 4 Issue: 3, 142 - 153, 01.07.2020
https://doi.org/10.31127/tuje.644597

Abstract

This article deals with the cleaning of generated gas for energy use in high-temperature fuel cells by the method of hightemperature adsorption in the potential utilization according to Industry 4.0. The study presents the methods of preparation of a wide range of sorbents, test equipment, used analytical methods and overview of achieved results. This project focused on high-temperature removal of acidic components such as hydrogen sulfide, Carbonyl sulfide, hydrogen chloride and hydrogen floride (H2S, COS, HCl and HF), using laboratory-made or commercial sorbents, from the gas resulting from the gasification of biomass. In the theoretical part of the biomass and its gasification, cleaning possibilities of the raw gas and, above all, of selecting a suitable adsorbent for high-temperature removal of unwanted components was the major focus. The possibilities of using purified gas in fuel were also mentioned in the article and the properties and structure of the fuel cell. The experimental part of the project addressed the testing of specific adsorbents at different temperatures. The task was to find a sorbent that would clean the raw gas at the specified temperature to the desired concentrations of undesirable components in order to enter as fuel into a high-temperature fuel cell. Commercial and naturally obtained dolomite were modified and tested. The effective time range of sorbents at atmospheric pressure (101.325 kPa) and at different temperatures ranging from 300 to 600 °C were also measured. From the results obtained, modified dolomite was established to be more effective adsorbent for the removal of hydrogen sulphide gas from syngas produced from biomass. 

References

  • Abbasian, J., Rehmat, A., Leppin, D., & Banerjee, D. D. (1990). Desulfurization of Fuels with Calcium-based Sorbents. Fuel Processing Technology, 25, 1–15.
  • Bakker, W. J. W., Kapteijn, F., & Moulijn, J. A. (2003). A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production Conceptual process application to coal gas cleaning. Chemical Engineering Journal, 96, 223–235. https://doi.org/10.1016/j.cej.2003.08.022
  • Cheah, S., Carpenter, D. L., & Magrini-bair, K. A. (2009). Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of. Energy & Fuels, 23, 5291–5307. https://doi.org/10.1021/ef900714q
  • Chutichai, B., Patcharavorachot, Y., & Assabumrungrat, S. (2015). Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production. Energy, 82, 406–413. https://doi.org/10.1016/j.energy.2015.01.051
  • Delgado, J., & Aznar, P. M. (1997). Biomass Gasification with Steam in Fluidized Bed : Effectiveness of CaO , MgO , and CaO - MgO for Hot Raw Gas Cleaning. Ind. Eng. Chem. Res., 35, 1535–1543. https://doi.org/10.1021/ie960273w
  • Fuertes, A.B., Velasco, G., Alvarez, T., Fernandez, M.J. (1995). Sulfation of dolomite particles at high CO2 partial pressures, Termochim. Acta, 254, 63.
  • Gu, J. M., & Ding, D. R. (1996). A study on the characteristics of adsorption for Zn2+, Cu2+, Pb2+ ions onto peat and lignite. Environmental Chemistry, 15, 343–346.
  • Gupta, R. P., & Brien, W. S. O. (2000). Desulfurization of Hot Syngas Containing Hydrogen Chloride Vapors Using Zinc Titanate Sorbents. Industrial & Engineering Chemistry Research, 39, 610–619. https://doi.org/10.1021/ie990533k
  • Husmann, M., Zuber, C., Maitz, V., Kienberger, T., & Hochenauer, C. (2016). Comparison of dolomite and lime as sorbents for in-situ H2S removal with respect to gasification parameters in biomass gasification. Fuel,181, 131–138. https://doi.org/10.1016/j.fuel.2016.04.124
  • Kalinci, Y., Hepbasli, A., & Dincer, I. (2009). Biomassbased hydrogen production : A review and analysis. International Journal of Hydrogen Energy, 34(21), 8799–8817. https://doi.org/10.1016/j.ijhydene.2009.08.078
  • Lee, J., & Feng, B. (2012). A thermodynamic study of the removal of HCl and H2S from syngas. Chemical Engineering Science, 6(1), 67–83. https://doi.org/10.1007/s11705-011-1162-4
  • Leppdahti, J., & Koljonen, T. (1995). Review Nitrogen evolution from coal , peat and wood during gasification : Literature review. Fuel Processing Technology, 43, 1–45.
  • Li, Q., Song, G., Xiao, J., Sun, T., & Yang, K. (2018). Exergy analysis of biomass staged-gasification for hydrogen-rich syngas. International Journal of Hydrogen Energy, 44(5), 2569–2579. https://doi.org/10.1016/j.ijhydene.2018.11.227.
  • Puigjaner, L. (2011). Syngas from Waste: Emerging Technologies Green Energy and Technology. Springer Science & Business Media, 127.
  • Mahishi, M. R., & Goswami, D. Y. (2007). Thermodynamic optimization of biomass gasifier for hydrogen production. International Journal of Hydrogen Energy, 32, 3831–3840. https://doi.org/10.1016/j.ijhydene.2007.05.018
  • Mazlumoğlu, H., & Gülaboğlu, M. (2017). Effect of Temperature on SO2 Absorption. Journal of the Turkish Chemical Society B, 1(1), 135–48.
  • Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield - A review. Renewable Energy, 66, 570–579. https://doi.org/10.1016/j.renene.2013.12.025.
  • Rubiera, F., Fuertes, A.B., Pis, J.J., Artos, V., & Marbàn, G. (1991). Changes in textural properties of limestone and dolomite during calcinations, Termochim. Acta, 179, 125.
  • Senthilkumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., & Sivanesan, S. (2011). Removal of copper ( II ) ions from aqueous solution by adsorption using cashew nut shell. Desalination, 266(1–3), 63–71. https://doi.org/10.1016/j.desal.2010.08.003
  • Su, Y., Han, R., Gao, J., Wei, S., Sun, F., & Zhao, G. (2019). Novel method for regeneration/reactivation of spent dolomite-based sorbents from calcium looping cycles. Chemical Engineering Journal, 360(August 2018), 148–156. https://doi.org/10.1016/j.cej.2018.11.095
  • Valverde, J. M., Perejon, A., Medina, S., & Perezmaqueda, L. A. (2015). Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis. Physical Chemistry Chemical Physics, 17,30162–30176. https://doi.org/10.1039/c5cp05596b
  • Wauton, I., & Ogbeide, S. E. (2019). Characterization of pyrolytic bio-oil from water hyacinth (Eichhornia crassipes ) pyrolysis in a fixed bed reactor. Biofuels, 0(0), 1–6. https://doi.org/10.1080/17597269.2018.1558838.
  • Westmoreland, P.R., Gibson, J.B. & Harrison, D.P. (1977). Comparative kinetics of high-temperature reaction between hydrogen sulfide and selected metal oxides. Environmental Science & Technology. 11(5), 488-491.
  • Wu, J., Liu, D., Zhou, W., Liu, Q., & Huang, Y. (2018). Status of Coal Gas H2S Removal. In High-Temperature H2S Removal from IGCC Coarse Gas (pp. 21–55). Springer Singapore.
  • Yin, H., & Yip, A. C. K. (2017). A Review on the Production and Purification of Biomass-Derived Hydrogen Using Emerging Membrane Technologies. Journal of Catalysts and Catalyzed Reactions, 7(297), 1–31. https://doi.org/10.3390/catal7100297
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ademola Stanford Olufemı 0000-0003-4523-1454

Olusegun Samson Osundare 0000-0001-9668-9030

İsaiah Oluwadamilare Odeyemı 0000-0002-8369-9130

Mirwais Kakar This is me 0000-0002-4215-9795

Publication Date July 1, 2020
Published in Issue Year 2020 Volume: 4 Issue: 3

Cite

APA Olufemı, A. S., Osundare, O. S., Odeyemı, İ. O., Kakar, M. (2020). DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT. Turkish Journal of Engineering, 4(3), 142-153. https://doi.org/10.31127/tuje.644597
AMA Olufemı AS, Osundare OS, Odeyemı İO, Kakar M. DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT. TUJE. July 2020;4(3):142-153. doi:10.31127/tuje.644597
Chicago Olufemı, Ademola Stanford, Olusegun Samson Osundare, İsaiah Oluwadamilare Odeyemı, and Mirwais Kakar. “DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT”. Turkish Journal of Engineering 4, no. 3 (July 2020): 142-53. https://doi.org/10.31127/tuje.644597.
EndNote Olufemı AS, Osundare OS, Odeyemı İO, Kakar M (July 1, 2020) DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT. Turkish Journal of Engineering 4 3 142–153.
IEEE A. S. Olufemı, O. S. Osundare, İ. O. Odeyemı, and M. Kakar, “DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT”, TUJE, vol. 4, no. 3, pp. 142–153, 2020, doi: 10.31127/tuje.644597.
ISNAD Olufemı, Ademola Stanford et al. “DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT”. Turkish Journal of Engineering 4/3 (July 2020), 142-153. https://doi.org/10.31127/tuje.644597.
JAMA Olufemı AS, Osundare OS, Odeyemı İO, Kakar M. DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT. TUJE. 2020;4:142–153.
MLA Olufemı, Ademola Stanford et al. “DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT”. Turkish Journal of Engineering, vol. 4, no. 3, 2020, pp. 142-53, doi:10.31127/tuje.644597.
Vancouver Olufemı AS, Osundare OS, Odeyemı İO, Kakar M. DESULPHURIZATION OF SYNGAS PRODUCED FROM BIOMASS USING DOLOMITE AS ADSORBENT. TUJE. 2020;4(3):142-53.
Flag Counter