Yerinde Problar Olmadan Etkili Toprak Nemi İzleme: LSTM Tabanlı Bluetooth Sinyal Gücü Analizi
Year 2024,
Volume: 25 Issue: 1, 21 - 38, 30.06.2024
Selçuk Yazar
,
Deniz Taşkın
,
Erdem Bahar
Abstract
Toprak yapısına zarar vermeden toprak nemi ölçümü tarımda önemlidir. Elektriksel iletkenlik ve mikrodalgalar bu amaçla yaygın olarak kullanılmaktadır. Son zamanlarda, toprak nem içeriğini belirlemek için yapay sinir ağları ve zaman serisi tahminlerinin kullanılmasına olan ilgi artmaktadır. Bu ölçümlerde mikrodalga cihazlara benzer şekilde Bluetooth sinyallerinden yararlanılmaktadır. Ancak Bluetooth sinyalleri, özel toprak nemi ölçüm cihazlarına kıyasla düşük iletim gücüne sahiptir. Bu çalışmada, Uzun Kısa Süreli Bellek (LSTM) sinir ağı mimarisi ve 0,001 Watt iletim gücüne sahip Bluetooth sinyal güçleri kullanılarak, özellikle farklı pH değerlerine sahip toprak örnekleri için toprak nem içeriğinin belirlenme olasılığı araştırılmaktadır. Amaç, toprak nem değişim durumunu yerinde bir prob olmadan doğrudan Bluetooth sinyal seviyelerini kullanarak değerlendirmekti. Deneysel bir çalışmada, alkali toprak örneklerinden elde edilen Bluetooth sinyal güçlerine dayalı bir yapay öğrenme modeli kullanılarak toprak nem içeriği değişimi %15'lik bir kök-ortalama-kare hata (RMSE) değeri ile tahmin edilmiştir. Bu yöntem, toprak nemi zaman içindeki sinyal seviyesi değişiklikleri izlenerek güvenilir bir şekilde ölçülebildiğinden, özel bir sensör ihtiyacını ortadan kaldırmaktadır.
References
- Abdel‐Wahab, W., Al‐Saedi, H., Ehsandar, A.,
Palizban, A., Raeis‐Zadeh, M., & Safavi‐Naeini, S.
(2019). Efficient integration of scalable active‐
phased array antenna based on modular approach
for MM‐wave applications. Microwave and Optical
Technology Letters, 61(5), 1333–1336.
https://doi.org/10.1002/mop.31744
- Adate, A., & Tripathy, B. K. (2019). S-LSTM-GAN:
Shared Recurrent Neural Networks with
Adversarial Training. In A. J. Kulkarni, S. C.
Satapathy, T. Kang, & A. H. Kashan (Eds.),
Proceedings of the 2nd International Conference on
Data Engineering and Communication Technology
(Vol. 828, pp. 107–115). Singapore: Springer
Singapore. https://doi.org/10.1007/978-981-13-
1610-4_11
- Allen-Zhu, Z., Li, Y., & Song, Z. (2019). On the
convergence rate of training recurrent neural
networks. In Proceedings of the 33rd International
Conference on Neural Information Processing
Systems (pp. 6676–6688). Red Hook, NY, USA:
Curran Associates Inc.
- Batchu, V., Nearing, G., & Gulshan, V. (2023). A Deep
Learning Data Fusion Model Using Sentinel-1/2,
SoilGrids, SMAP, and GLDAS for Soil Moisture
Retrieval. Journal of Hydrometeorology, 24(10),
1789–1823. https://doi.org/10.1175/JHM-D-22-
0118.1
- Calla, O. P. N. (2002). Application of Microwave
Remote Sensing In Ocean Studies. 2, 623–632.
Kochi, India: Allied Publishers.
- Carbune, V., Gonnet, P., Deselaers, T., Rowley, H. A.,
Daryin, A., Calvo, M., … Gervais, P. (2020). Fast
multi-language LSTM-based online handwriting
recognition. International Journal on Document
Analysis and Recognition (IJDAR), 23(2), 89–102.
https://doi.org/10.1007/s10032-020-00350-4
- Carrière, S. D., Martin-StPaul, N. K., Doussan, C.,
Courbet, F., Davi, H., & Simioni, G. (2021).
Electromagnetic Induction Is a Fast and NonDestructive Approach to Estimate the Influence of
Subsurface Heterogeneity on Forest Canopy
Structure. Water, 13(22), 3218.
https://doi.org/10.3390/w13223218
- Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., & Bengio, Y. (2014,
September 2). Learning Phrase Representations
using RNN Encoder-Decoder for Statistical
Machine Translation. arXiv. Retrieved from
http://arxiv.org/abs/1406.1078
- Darroudi, S., Caldera-Sànchez, R., & Gomez, C.
(2019). Bluetooth Mesh Energy Consumption: A
Model. Sensors, 19(5), 1238.
https://doi.org/10.3390/s19051238
- Davis, J. L., & Chudobiak, W. J. (1975). In Situ Meter
for Measuring Relative Permittivity of Soils. 75-
1A. https://doi.org/10.4095/104349
- De Jeu, R. A. M., Holmes, T. R. H., Parinussa, R. M.,
& Owe, M. (2014). A spatially coherent global soil
moisture product with improved temporal
resolution. Journal of Hydrology, 516, 284–296.
https://doi.org/10.1016/j.jhydrol.2014.02.015
- Dong, J., Steele‐Dunne, S. C., Ochsner, T. E., & Van
De Giesen, N. (2016). Determining soil moisture
and soil properties in vegetated areas by
assimilating soil temperatures. Water Resources
Research, 52(6), 4280–4300.
https://doi.org/10.1002/2015WR018425
- Ertam, F. (2019). An effective gender recognition
approach using voice data via deeper LSTM
networks. Applied Acoustics, 156, 351–358.
https://doi.org/10.1016/j.apacoust.2019.07.033
- Gao, T., Gong, X., Zhang, K., Lin, F., Wang, J., Huang,
T., & Zurada, J. M. (2020). A recalling-enhanced
recurrent neural network: Conjugate gradient
learning algorithm and its convergence analysis.
Information Sciences, 519, 273–288.
https://doi.org/10.1016/j.ins.2020.01.045
- Gardner, W., & Kirkham, D. (1952).
DETERMINATION OF SOIL MOISTURE BY
NEUTRON SCATTERING: Soil Science, 73(5),
391–402. https://doi.org/10.1097/00010694-
195205000-00007
- Gascho, G. J., Parker, M. B., & Gaines, T. P. (1996).
Reevaluation of suspension solutions for soil pH.
Communications in Soil Science and Plant
Analysis, 27(3–4), 773–782.
https://doi.org/10.1080/00103629609369594
- Ghori, M. R., Wan, T.-C., & Sodhy, G. C. (2020).
Bluetooth Low Energy 5 Mesh Based Hospital
Communication Network (B5MBHCN). In M.
Anbar, N. Abdullah, & S. Manickam (Eds.),
Advances in Cyber Security (Vol. 1132, pp. 247–
261). Singapore: Springer Singapore.
https://doi.org/10.1007/978-981-15-2693-0_18
- H. Ali, M., & K. Ali, N. (2019). IoT based security
system and intelligent home automation multi
monitoring and control systems. IAES International
Journal of Robotics and Automation (IJRA), 8(3),
205. https://doi.org/10.11591/ijra.v8i3.pp205-210
- Han, Q., Zeng, Y., Zhang, L., Cira, C.-I., Prikaziuk, E.,
Duan, T., … Su, B. (2023). Ensemble of optimised
machine learning algorithms for predicting surface
soil moisture content at global scale [Preprint].
Earth and space science informatics.
https://doi.org/10.5194/gmd-2023-83
- Hanzlíček, Z., Vít, J., & Tihelka, D. (2019). LSTMBased Speech Segmentation for TTS Synthesis. In
K. Ekštein (Ed.), Text, Speech, and Dialogue (Vol.
11697, pp. 361–372). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-
27947-9_31
- Haria, A. H., Johnson, A. C., Bell, J. P., & Batchelor,
C. H. (1994). Water movement and isoproturon
behaviour in a drained heavy clay soil: 1.
Preferential flow processes. Journal of Hydrology,
163(3–4), 203–216. https://doi.org/10.1016/0022-
1694(94)90140-6
- Hochreiter, S., & Schmidhuber, J. (1997). Long ShortTerm Memory. Neural Computation, 9(8), 1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hu, H., Li, Z., Elofsson, A., & Xie, S. (2019). A BiLSTM Based Ensemble Algorithm for Prediction of
Protein Secondary Structure. Applied Sciences,
9(17), 3538. https://doi.org/10.3390/app9173538
- Hussain, T., Muhammad, K., Ullah, A., Cao, Z., Baik,
S. W., & De Albuquerque, V. H. C. (2020). CloudAssisted Multiview Video Summarization Using
CNN and Bidirectional LSTM. IEEE Transactions
on Industrial Informatics, 16(1), 77–86.
https://doi.org/10.1109/TII.2019.2929228
- Lambot, S., Slob, E., Minet, J., Jadoon, K. Z.,
Vanclooster, M., & Vereecken, H. (2010). FullWaveform Modelling and Inversion of GroundPenetrating Radar Data for Non-invasive
Characterisation of Soil Hydrogeophysical
Properties. In R. A. Viscarra Rossel, A. B.
McBratney, & B. Minasny (Eds.), Proximal Soil
Sensing (pp. 299–311). Dordrecht: Springer
Netherlands. https://doi.org/10.1007/978-90-481-
8859-8_25
- Luo, D., Wen, X., & He, P. (2023). Surface Soil
Moisture Estimation Using a Neural Network
Model in Bare Land and Vegetated Areas. Journal
of Spectroscopy, 2023, 1–10.
https://doi.org/10.1155/2023/5887177
- Ma, Z., Wu, B., Chang, S., Yan, N., & Zhu, W. (2023).
Developing a physics-guided neural network to
predict soil moisture with remote sensing
evapotranspiration and weather forecasting [Other].
pico. https://doi.org/10.5194/egusphere-egu23-
10597
- Mamun, M. A. A., & Yuce, M. R. (2019). Sensors and
Systems for Wearable Environmental Monitoring
Toward IoT-Enabled Applications: A Review.
IEEE Sensors Journal, 19(18), 7771–7788.
https://doi.org/10.1109/JSEN.2019.2919352
- Martín, F., Vélez, P., Muñoz-Enano, J., & Su, L.
(2023). Planar microwave sensors. Hoboken, New
Jersey: Wiley-IEEE Press.
- Mu, T., Liu, G., Yang, X., & Yu, Y. (2022). SoilMoisture Estimation Based on Multiple-Source
Remote-Sensing Images. Remote Sensing, 15(1),
139. https://doi.org/10.3390/rs15010139
- Nagarajan, B., Shanmugam, V., Ananthanarayanan, V.,
& Bagavathi Sivakumar, P. (2020). Localization
and Indoor Navigation for Visually Impaired Using
Bluetooth Low Energy. In A. K. Somani, R. S.
Shekhawat, A. Mundra, S. Srivastava, & V. K.
Verma (Eds.), Smart Systems and IoT: Innovations
in Computing (Vol. 141, pp. 249–259). Singapore:
Springer Singapore. https://doi.org/10.1007/978-
981-13-8406-6_25
- Newman, A. L. (1964). Soil Survey (Vol. 17). US
Department of Agriculture, Soil Conservation
Service.
- Nguyen, T. P., & Songsermpong, S. (2022). Microwave
processing technology for food safety and quality:
A review. Agriculture and Natural Resources,
56(1), 57–72. Retrieved from https://li01.tcithaijo.org/index.php/anres/article/view/253973
- Noborio, K. (2001). Measurement of soil water content
and electrical conductivity by time domain
reflectometry: a review. Computers and Electronics
in Agriculture, 31(3), 213–237.
https://doi.org/10.1016/S0168-1699(00)00184-8
- Panciera, R., Walker, J. P., Jackson, T. J., Gray, D. A.,
Tanase, M. A., Ryu, D., … Hacker, J. M. (2014).
The Soil Moisture Active Passive Experiments
(SMAPEx): Toward Soil Moisture Retrieval From
the SMAP Mission. IEEE Transactions on
Geoscience and Remote Sensing, 52(1), 490–507.
https://doi.org/10.1109/TGRS.2013.2241774
- Paul, I. J. L., Sasirekha, S., Vishnu, D. R., & Surya, K.
(2019). Recognition of handwritten text using long
short term memory (LSTM) recurrent neural
network (RNN). 030011. Kurdistan, Iraq.
https://doi.org/10.1063/1.5097522
- Pekel, E. (2020). EVALUATION OF ESTIMATION
PERFORMANCE FOR SOIL MOISTURE USING
PARTICLE SWARM OPTIMIZATION AND
ARTIFICIAL NEURAL NETWORK. Ömer
Halisdemir Üniversitesi Mühendislik Bilimleri
Dergisi. https://doi.org/10.28948/ngumuh.529418
- Reginato, R. J., & Van Bavel, C. H. M. (1964). Soil
Water Measurement with Gamma Attenuation. Soil
Science Society of America Journal, 28(6), 721–
724.
https://doi.org/10.2136/sssaj1964.0361599500280
0060014x
- Ren, G., & Ganapathy, V. (2019). Recognition of
Online Handwriting with Variability on Smart
Devices. ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), 7605–7609. Brighton,
United Kingdom: IEEE.
https://doi.org/10.1109/ICASSP.2019.8682706
Scheberl, L., Scharenbroch, B. C., Werner, L. P.,
- Prater, J. R., & Fite, K. L. (2019). Evaluation of soil
pH and soil moisture with different field sensors:
Case study urban soil. Urban Forestry & Urban
Greening, 38, 267–279.
https://doi.org/10.1016/j.ufug.2019.01.001
- Schuster, M., & Paliwal, K. K. (1997). Bidirectional
recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11), 2673–2681.
https://doi.org/10.1109/78.650093
- Sengupta, D. L., & Liepa, V. V. (2005). Applied
Electromagnetics and Electromagnetic
Compatibility (1st ed.). Wiley.
https://doi.org/10.1002/0471746231
- Singh, A., & Gaurav, K. (2023). Deep learning and data
fusion to estimate surface soil moisture from multisensor satellite images. Scientific Reports, 13(1),
2251. https://doi.org/10.1038/s41598-023-28939-9
- Sun, H., Cai, C., Liu, H., & Yang, B. (2019).
Microwave and Meteorological Fusion: A method
of Spatial Downscaling of Remotely Sensed Soil
Moisture. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing,
12(4), 1107–1119.
https://doi.org/10.1109/JSTARS.2019.2901921
- Topp, G. C., Davis, J. L., & Annan, A. P. (1980).
Electromagnetic determination of soil water
content: Measurements in coaxial transmission
lines. Water Resources Research, 16(3), 574–582.
https://doi.org/10.1029/WR016i003p00574
- Wang, T., Zhou, J., Wang, W., Zhang, G., Huang, M.,
& Lai, Y. (2019). A personal local area information
interaction system based on NFC and Bluetooth
technology. International Journal of High
Performance Computing and Networking, 13(4),
455. https://doi.org/10.1504/IJHPCN.2019.099268
- Wu, F., Wu, T., & Yuce, M. (2018). An Internet of Things (IoT) Network System for Connected Safety
and Health Monitoring Applications. Sensors,
19(1), 21. https://doi.org/10.3390/s19010021
- Zárate-Valdez, J. L., Zasoski, R., & Läuchli, A. (2006).
SHORT-TERM EFFECTS OF MOISTURE
CONTENT ON SOIL SOLUTION pH AND SOIL
EH. Soil Science. Retrieved from
https://www.semanticscholar.org/paper/SHORTTERM-EFFECTS-OF-MOISTURE-CONTENTON-SOIL-pH-Z%C3%A1rate-Valdez38asoski/ba3aba909b76ba66b9be0cc8bfec3c897ae2
5f32
- Zhang, Y., Qu, C., & Wang, Y. (2020). An Indoor
Positioning Method Based on CSI by Using
Features Optimization Mechanism With LSTM.
IEEE Sensors Journal, 20(9), 4868–4878.
https://doi.org/10.1109/JSEN.2020.2965590
- Zia, T., & Zahid, U. (2019). Long short-term memory
recurrent neural network architectures for Urdu
acoustic modeling. International Journal of Speech
Technology, 22(1), 21–30.
https://doi.org/10.1007/s10772-018-09573-7
Efficient Soil Moisture Monitoring without In-Situ Probes: LSTM-Based Bluetooth Signal Strengths Analysis
Year 2024,
Volume: 25 Issue: 1, 21 - 38, 30.06.2024
Selçuk Yazar
,
Deniz Taşkın
,
Erdem Bahar
Abstract
Soil moisture measurement without damaging soil structure is important in agriculture. Electrical conductivity and microwaves are commonly used for this purpose. Recently, there has been growing interest in using artificial neural networks and time series forecasting to determine soil moisture content. Bluetooth signals, similar to microwave devices, are utilized in these measurements. However, Bluetooth signals have low transmission power compared to dedicated soil moisture measurement devices. This study investigates the possibility of determining soil moisture content using Long Short-Term Memory (LSTM) neural network architecture and Bluetooth signal strengths with 0.001 Watt transmission power, specifically for soil samples with varying pH values. The objective was to assess soil moisture change status directly using Bluetooth signal levels without an in-situ probe. In an experimental study, soil moisture content changing was predicted with a root-mean-square error (RMSE) value of 15% using an artificial learning model based on Bluetooth signal strengths obtained from alkali soil samples. This method eliminates the need for a dedicated sensor, as soil moisture can be reliably measured by tracking signal level changes over time.
References
- Abdel‐Wahab, W., Al‐Saedi, H., Ehsandar, A.,
Palizban, A., Raeis‐Zadeh, M., & Safavi‐Naeini, S.
(2019). Efficient integration of scalable active‐
phased array antenna based on modular approach
for MM‐wave applications. Microwave and Optical
Technology Letters, 61(5), 1333–1336.
https://doi.org/10.1002/mop.31744
- Adate, A., & Tripathy, B. K. (2019). S-LSTM-GAN:
Shared Recurrent Neural Networks with
Adversarial Training. In A. J. Kulkarni, S. C.
Satapathy, T. Kang, & A. H. Kashan (Eds.),
Proceedings of the 2nd International Conference on
Data Engineering and Communication Technology
(Vol. 828, pp. 107–115). Singapore: Springer
Singapore. https://doi.org/10.1007/978-981-13-
1610-4_11
- Allen-Zhu, Z., Li, Y., & Song, Z. (2019). On the
convergence rate of training recurrent neural
networks. In Proceedings of the 33rd International
Conference on Neural Information Processing
Systems (pp. 6676–6688). Red Hook, NY, USA:
Curran Associates Inc.
- Batchu, V., Nearing, G., & Gulshan, V. (2023). A Deep
Learning Data Fusion Model Using Sentinel-1/2,
SoilGrids, SMAP, and GLDAS for Soil Moisture
Retrieval. Journal of Hydrometeorology, 24(10),
1789–1823. https://doi.org/10.1175/JHM-D-22-
0118.1
- Calla, O. P. N. (2002). Application of Microwave
Remote Sensing In Ocean Studies. 2, 623–632.
Kochi, India: Allied Publishers.
- Carbune, V., Gonnet, P., Deselaers, T., Rowley, H. A.,
Daryin, A., Calvo, M., … Gervais, P. (2020). Fast
multi-language LSTM-based online handwriting
recognition. International Journal on Document
Analysis and Recognition (IJDAR), 23(2), 89–102.
https://doi.org/10.1007/s10032-020-00350-4
- Carrière, S. D., Martin-StPaul, N. K., Doussan, C.,
Courbet, F., Davi, H., & Simioni, G. (2021).
Electromagnetic Induction Is a Fast and NonDestructive Approach to Estimate the Influence of
Subsurface Heterogeneity on Forest Canopy
Structure. Water, 13(22), 3218.
https://doi.org/10.3390/w13223218
- Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., & Bengio, Y. (2014,
September 2). Learning Phrase Representations
using RNN Encoder-Decoder for Statistical
Machine Translation. arXiv. Retrieved from
http://arxiv.org/abs/1406.1078
- Darroudi, S., Caldera-Sànchez, R., & Gomez, C.
(2019). Bluetooth Mesh Energy Consumption: A
Model. Sensors, 19(5), 1238.
https://doi.org/10.3390/s19051238
- Davis, J. L., & Chudobiak, W. J. (1975). In Situ Meter
for Measuring Relative Permittivity of Soils. 75-
1A. https://doi.org/10.4095/104349
- De Jeu, R. A. M., Holmes, T. R. H., Parinussa, R. M.,
& Owe, M. (2014). A spatially coherent global soil
moisture product with improved temporal
resolution. Journal of Hydrology, 516, 284–296.
https://doi.org/10.1016/j.jhydrol.2014.02.015
- Dong, J., Steele‐Dunne, S. C., Ochsner, T. E., & Van
De Giesen, N. (2016). Determining soil moisture
and soil properties in vegetated areas by
assimilating soil temperatures. Water Resources
Research, 52(6), 4280–4300.
https://doi.org/10.1002/2015WR018425
- Ertam, F. (2019). An effective gender recognition
approach using voice data via deeper LSTM
networks. Applied Acoustics, 156, 351–358.
https://doi.org/10.1016/j.apacoust.2019.07.033
- Gao, T., Gong, X., Zhang, K., Lin, F., Wang, J., Huang,
T., & Zurada, J. M. (2020). A recalling-enhanced
recurrent neural network: Conjugate gradient
learning algorithm and its convergence analysis.
Information Sciences, 519, 273–288.
https://doi.org/10.1016/j.ins.2020.01.045
- Gardner, W., & Kirkham, D. (1952).
DETERMINATION OF SOIL MOISTURE BY
NEUTRON SCATTERING: Soil Science, 73(5),
391–402. https://doi.org/10.1097/00010694-
195205000-00007
- Gascho, G. J., Parker, M. B., & Gaines, T. P. (1996).
Reevaluation of suspension solutions for soil pH.
Communications in Soil Science and Plant
Analysis, 27(3–4), 773–782.
https://doi.org/10.1080/00103629609369594
- Ghori, M. R., Wan, T.-C., & Sodhy, G. C. (2020).
Bluetooth Low Energy 5 Mesh Based Hospital
Communication Network (B5MBHCN). In M.
Anbar, N. Abdullah, & S. Manickam (Eds.),
Advances in Cyber Security (Vol. 1132, pp. 247–
261). Singapore: Springer Singapore.
https://doi.org/10.1007/978-981-15-2693-0_18
- H. Ali, M., & K. Ali, N. (2019). IoT based security
system and intelligent home automation multi
monitoring and control systems. IAES International
Journal of Robotics and Automation (IJRA), 8(3),
205. https://doi.org/10.11591/ijra.v8i3.pp205-210
- Han, Q., Zeng, Y., Zhang, L., Cira, C.-I., Prikaziuk, E.,
Duan, T., … Su, B. (2023). Ensemble of optimised
machine learning algorithms for predicting surface
soil moisture content at global scale [Preprint].
Earth and space science informatics.
https://doi.org/10.5194/gmd-2023-83
- Hanzlíček, Z., Vít, J., & Tihelka, D. (2019). LSTMBased Speech Segmentation for TTS Synthesis. In
K. Ekštein (Ed.), Text, Speech, and Dialogue (Vol.
11697, pp. 361–372). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-
27947-9_31
- Haria, A. H., Johnson, A. C., Bell, J. P., & Batchelor,
C. H. (1994). Water movement and isoproturon
behaviour in a drained heavy clay soil: 1.
Preferential flow processes. Journal of Hydrology,
163(3–4), 203–216. https://doi.org/10.1016/0022-
1694(94)90140-6
- Hochreiter, S., & Schmidhuber, J. (1997). Long ShortTerm Memory. Neural Computation, 9(8), 1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hu, H., Li, Z., Elofsson, A., & Xie, S. (2019). A BiLSTM Based Ensemble Algorithm for Prediction of
Protein Secondary Structure. Applied Sciences,
9(17), 3538. https://doi.org/10.3390/app9173538
- Hussain, T., Muhammad, K., Ullah, A., Cao, Z., Baik,
S. W., & De Albuquerque, V. H. C. (2020). CloudAssisted Multiview Video Summarization Using
CNN and Bidirectional LSTM. IEEE Transactions
on Industrial Informatics, 16(1), 77–86.
https://doi.org/10.1109/TII.2019.2929228
- Lambot, S., Slob, E., Minet, J., Jadoon, K. Z.,
Vanclooster, M., & Vereecken, H. (2010). FullWaveform Modelling and Inversion of GroundPenetrating Radar Data for Non-invasive
Characterisation of Soil Hydrogeophysical
Properties. In R. A. Viscarra Rossel, A. B.
McBratney, & B. Minasny (Eds.), Proximal Soil
Sensing (pp. 299–311). Dordrecht: Springer
Netherlands. https://doi.org/10.1007/978-90-481-
8859-8_25
- Luo, D., Wen, X., & He, P. (2023). Surface Soil
Moisture Estimation Using a Neural Network
Model in Bare Land and Vegetated Areas. Journal
of Spectroscopy, 2023, 1–10.
https://doi.org/10.1155/2023/5887177
- Ma, Z., Wu, B., Chang, S., Yan, N., & Zhu, W. (2023).
Developing a physics-guided neural network to
predict soil moisture with remote sensing
evapotranspiration and weather forecasting [Other].
pico. https://doi.org/10.5194/egusphere-egu23-
10597
- Mamun, M. A. A., & Yuce, M. R. (2019). Sensors and
Systems for Wearable Environmental Monitoring
Toward IoT-Enabled Applications: A Review.
IEEE Sensors Journal, 19(18), 7771–7788.
https://doi.org/10.1109/JSEN.2019.2919352
- Martín, F., Vélez, P., Muñoz-Enano, J., & Su, L.
(2023). Planar microwave sensors. Hoboken, New
Jersey: Wiley-IEEE Press.
- Mu, T., Liu, G., Yang, X., & Yu, Y. (2022). SoilMoisture Estimation Based on Multiple-Source
Remote-Sensing Images. Remote Sensing, 15(1),
139. https://doi.org/10.3390/rs15010139
- Nagarajan, B., Shanmugam, V., Ananthanarayanan, V.,
& Bagavathi Sivakumar, P. (2020). Localization
and Indoor Navigation for Visually Impaired Using
Bluetooth Low Energy. In A. K. Somani, R. S.
Shekhawat, A. Mundra, S. Srivastava, & V. K.
Verma (Eds.), Smart Systems and IoT: Innovations
in Computing (Vol. 141, pp. 249–259). Singapore:
Springer Singapore. https://doi.org/10.1007/978-
981-13-8406-6_25
- Newman, A. L. (1964). Soil Survey (Vol. 17). US
Department of Agriculture, Soil Conservation
Service.
- Nguyen, T. P., & Songsermpong, S. (2022). Microwave
processing technology for food safety and quality:
A review. Agriculture and Natural Resources,
56(1), 57–72. Retrieved from https://li01.tcithaijo.org/index.php/anres/article/view/253973
- Noborio, K. (2001). Measurement of soil water content
and electrical conductivity by time domain
reflectometry: a review. Computers and Electronics
in Agriculture, 31(3), 213–237.
https://doi.org/10.1016/S0168-1699(00)00184-8
- Panciera, R., Walker, J. P., Jackson, T. J., Gray, D. A.,
Tanase, M. A., Ryu, D., … Hacker, J. M. (2014).
The Soil Moisture Active Passive Experiments
(SMAPEx): Toward Soil Moisture Retrieval From
the SMAP Mission. IEEE Transactions on
Geoscience and Remote Sensing, 52(1), 490–507.
https://doi.org/10.1109/TGRS.2013.2241774
- Paul, I. J. L., Sasirekha, S., Vishnu, D. R., & Surya, K.
(2019). Recognition of handwritten text using long
short term memory (LSTM) recurrent neural
network (RNN). 030011. Kurdistan, Iraq.
https://doi.org/10.1063/1.5097522
- Pekel, E. (2020). EVALUATION OF ESTIMATION
PERFORMANCE FOR SOIL MOISTURE USING
PARTICLE SWARM OPTIMIZATION AND
ARTIFICIAL NEURAL NETWORK. Ömer
Halisdemir Üniversitesi Mühendislik Bilimleri
Dergisi. https://doi.org/10.28948/ngumuh.529418
- Reginato, R. J., & Van Bavel, C. H. M. (1964). Soil
Water Measurement with Gamma Attenuation. Soil
Science Society of America Journal, 28(6), 721–
724.
https://doi.org/10.2136/sssaj1964.0361599500280
0060014x
- Ren, G., & Ganapathy, V. (2019). Recognition of
Online Handwriting with Variability on Smart
Devices. ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), 7605–7609. Brighton,
United Kingdom: IEEE.
https://doi.org/10.1109/ICASSP.2019.8682706
Scheberl, L., Scharenbroch, B. C., Werner, L. P.,
- Prater, J. R., & Fite, K. L. (2019). Evaluation of soil
pH and soil moisture with different field sensors:
Case study urban soil. Urban Forestry & Urban
Greening, 38, 267–279.
https://doi.org/10.1016/j.ufug.2019.01.001
- Schuster, M., & Paliwal, K. K. (1997). Bidirectional
recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11), 2673–2681.
https://doi.org/10.1109/78.650093
- Sengupta, D. L., & Liepa, V. V. (2005). Applied
Electromagnetics and Electromagnetic
Compatibility (1st ed.). Wiley.
https://doi.org/10.1002/0471746231
- Singh, A., & Gaurav, K. (2023). Deep learning and data
fusion to estimate surface soil moisture from multisensor satellite images. Scientific Reports, 13(1),
2251. https://doi.org/10.1038/s41598-023-28939-9
- Sun, H., Cai, C., Liu, H., & Yang, B. (2019).
Microwave and Meteorological Fusion: A method
of Spatial Downscaling of Remotely Sensed Soil
Moisture. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing,
12(4), 1107–1119.
https://doi.org/10.1109/JSTARS.2019.2901921
- Topp, G. C., Davis, J. L., & Annan, A. P. (1980).
Electromagnetic determination of soil water
content: Measurements in coaxial transmission
lines. Water Resources Research, 16(3), 574–582.
https://doi.org/10.1029/WR016i003p00574
- Wang, T., Zhou, J., Wang, W., Zhang, G., Huang, M.,
& Lai, Y. (2019). A personal local area information
interaction system based on NFC and Bluetooth
technology. International Journal of High
Performance Computing and Networking, 13(4),
455. https://doi.org/10.1504/IJHPCN.2019.099268
- Wu, F., Wu, T., & Yuce, M. (2018). An Internet of Things (IoT) Network System for Connected Safety
and Health Monitoring Applications. Sensors,
19(1), 21. https://doi.org/10.3390/s19010021
- Zárate-Valdez, J. L., Zasoski, R., & Läuchli, A. (2006).
SHORT-TERM EFFECTS OF MOISTURE
CONTENT ON SOIL SOLUTION pH AND SOIL
EH. Soil Science. Retrieved from
https://www.semanticscholar.org/paper/SHORTTERM-EFFECTS-OF-MOISTURE-CONTENTON-SOIL-pH-Z%C3%A1rate-Valdez38asoski/ba3aba909b76ba66b9be0cc8bfec3c897ae2
5f32
- Zhang, Y., Qu, C., & Wang, Y. (2020). An Indoor
Positioning Method Based on CSI by Using
Features Optimization Mechanism With LSTM.
IEEE Sensors Journal, 20(9), 4868–4878.
https://doi.org/10.1109/JSEN.2020.2965590
- Zia, T., & Zahid, U. (2019). Long short-term memory
recurrent neural network architectures for Urdu
acoustic modeling. International Journal of Speech
Technology, 22(1), 21–30.
https://doi.org/10.1007/s10772-018-09573-7