Research Article
BibTex RIS Cite

Relationships between anthocyanin content and some pomological and colour characteristics of black mulberry (Morus nigra) fruit

Year 2024, Volume: 6 Issue: 1, 55 - 62, 30.06.2024
https://doi.org/10.53663/turjfas.1440608

Abstract

The analytical method used to determine the total monomeric anthocyanin content of fruits is costly and labour intensive. Researchers are endeavouring to develop prediction models to determine anthocyanin content in a simpler and more accurate way. The aim of this study was to investigate whether there is a relationship between anthocyanin and some fruit characteristics (width, length, weight, L*, a*, b*, chroma, hue) in black mulberry (Morus nigra) fruit. With the outputs of the study, it is aimed to provide preliminary information for the models to be developed for anthocyanin estimation in future studies. The study material, black mulberry fruits, was collected from a single black mulberry tree in Kemalpaşa village of Tokat province in July 2022. Harvesting of the fruits continued for two weeks as raw, semi-ripe and ripe. A total of 586 fruits were individually evaluated and the weight, width, length, colour parameters (L*, a*, b*, chroma, and hue) and total monomeric anthocyanin contents of each fruit were determined. Then, Pearson correlation coefficients between the variables were determined. Stepwise regression analysis was used to find the appropriate model to explain the change in the dependent variable anthocyanin with independent variables (length, width, weight, L*, a*, b*, chroma, hue). After the multiple regression model was established, residual analysis was performed to see the outliers in the full model and to check the accuracy of the model. As a result of the study, it was observed that anthocyanin content could be predicted by colour parameters up to a certain maturity stage. This relationship was found to weaken at the ripeness stage when the fruit colour turns black.

References

  • Aman, F., & Masood, S. (2020). How nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36 (COVID19-S4), S121. https://doi.org/10.12669/pjms.36.COVID19-S4.2776
  • Arozarena, I., Ortiz, J., Hermosín-Gutiérrez, I., Urretavizcaya, I., Salvatierra, S., Córdova, I., Marín-Arroyo M. R., Noriega M. J., & Navarro, M. (2012). Color, ellagitannins, anthocyanins, and antioxidant activity of Andean blackberry (Rubus glaucus Benth.) wines. Journal of Agricultural and Food Cemistry, 60(30), 7463-7473. https://doi.org/10.1021/jf300924z
  • Castaneda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
  • Castro-Acosta, M. L., Lenihan-Geels, G. N., Corpe, C. P., & Hall, W. L. (2016). Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proceedings of the Nutrition Society, 75(3), 342-355. https://doi.org/10.1017/S0029665116000240
  • Chu, L., Du, Q., Li, A., Liu, G., Wang, H., Cui, Q., Liu, Z., Liu, H., Lu Y., Deng Y., & Xu, G. (2024). Integrative transcriptomic and metabolomic analyses of the mechanism of anthocyanin accumulation and fruit coloring in three blueberry varieties of different colors. Horticulturae, 10(1), 105. https://doi.org/10.3390/horticulturae10010105
  • de Faria Coelho-Ravagnani, C., Corgosinho, F. C., Sanches, F. L. F. Z., Prado, C. M. M., Laviano, A., & Mota, J. F. (2021). Dietary recommendations during the COVID-19 pandemic. Nutrition Reviews, 79(4), 382-393. https://doi.org/10.1093/nutrit/nuaa067
  • Deroles, S. (2009). Anthocyanin biosynthesis in plant cell cultures: A potential source of natural colourants. Anthocyanins: biosynthesis, functions, and applications, 108-167. Springer Science & Business Media. (Eds.: Gould, K., Davies, K. M., & Winefield, C.). https://doi.org/10.1007/978-0-387-77335-3_5
  • do Lago, R. C., Silva, J. S., Pinto, K. M., Rodrigues, L. F., & Boas, E. V. D. B. V. (2020). Effect of maturation stage on the physical, chemical and biochemical composition of black mulberry. Research, Society and Development, 9(4), e49942824-e49942824. https://doi.org/10.33448/rsd-v9i4.2824
  • Ercisli, S., & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054
  • Feng, C., Su, S., Wang, L., Wu, J., Tang, Z., Xu, Y., Shu, Q., & Wang, L. (2016). Antioxidant capacities and anthocyanin characteristics of the black–red wild berries obtained in Northeast China. Food Chemistry, 204, 150-158. https://doi.org/10.1016/j.foodchem.2016.02.122
  • Giusti M. M, & Wrolstad R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Unit F1.2, p. 19–31. In: Wrolstad, R.E. and S.J. Schwartz (eds.). Handbook of food analytical chemistry. Wiley, New York. https://doi.org/10.1002/0471142913.faf0102s00
  • Guidi, L., Penella, P., & Landi, M. (2015). Anthocyanins in Mediterranean diet: common and innovative sources. In Handbook of Anthocyanins: Food Sources, Chemical Application and Health Benefit. (pp. 1-50). Nova Science Publishers, Inc.
  • Han, F. L., Zhang, W. N., Pan, Q. H., Zheng, C. R., Chen, H. Y., & Duan, C. Q. (2008). Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules, 13(11), 2859-2870. https://doi.org/10.3390/molecules13112859
  • Heldt, H. W., & Piechulla, B. (2015). Plant biochemistry. Academic Press. Translation from the 4th Edition. Translation Editors: Prof. Dr. Faik Ahmet Ayaz & Prof. Dr. Atalay Sökmen). 608 p.
  • Hernanz, D., Recamales, Á. F., Meléndez-Martínez, A. J., González-Miret, M. L., & Heredia, F. J. (2008). Multivariate statistical analysis of the color− anthocyanin relationships in different soilless-grown strawberry genotypes. Journal of Agricultural and Food Chemistry, 56(8), 2735-2741. https://doi.org/10.1021/jf073389j
  • Hosmer, D. W. & Lemeshow, S. (1999). Applied Survival Analysis, New York: John Wiley & Sons, Inc.
  • Hou, D. X., Fujii, M., Terahara, N., & Yoshimoto, M. (2004). Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology, 2004(5), 321. https://doi.org/10.1155/S1110724304403040
  • Itle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633-637. https://doi.org/10.21273/HORTSCI.44.3.633
  • Karaat, F.E., Gündüz, K., Saraçoğlu, O., & Yıldırım, H. (2019). Pomological and phytochemical evaluation of different cherry species: mahaleb (Prunus mahaleb L.), wild sweet cherry (Prunus avium L.) and wild sour cherry (Prunus cerasus L.), sweet and sour cherry cultivars. Acta Scientiarum Polonorum Hortorum Cultus, 18(4), 181–191. https://doi.org/10.24326/asphc.2019.4.17
  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779
  • Koca, I., & Karadeniz, B. (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae, 121(4), 447-450. https://doi.org/10.1016/j.scienta.2009.03.015
  • Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
  • Li, S., Yang, Y., Yu, J., Zhou, H., Hou, Z., & Wang, X. (2024). Molecular and metabolic insights into purplish leaf coloration through the investigation of two mulberry (Morus alba) genotypes. BMC Plant Biology, 24(1), 1-17. https://doi.org/10.1186/s12870-024-04737-x
  • Lin, C. Y., & Lay, H. L. (2013). Characteristics of fruit growth, component analysis and antioxidant activity of mulberry (Morus spp.). Scientia Horticulturae, 162, 285-292. https://doi.org/10.1016/j.scienta.2013.08.009
  • Manetas, Y. (2006). Why some leaves are anthocyanic and why most anthocyanic leaves are red?. Flora-Morphology, Distribution, Functional Ecology of Plants, 201(3), 163-177. https://doi.org/10.1016/j.flora.2005.06.010
  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
  • Naja, F., & Hamadeh, R. (2020). Nutrition amid the COVID-19 pandemic: a multi-level framework for action. European Journal of Clinical Nutrition, 74(8), 1117-1121. https://doi.org/10.1038/s41430-020-0634-3
  • Özgen, M., Serçe, S., & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Scientia Horticulturae, 119(3), 275-279. https://doi.org/10.1016/j.scienta.2008.08.007
  • Shibghatallah, M. A. H., Khotimah, S. N., Suhandono, S., Viridi, S., & Kesuma, T. (2013). Measuring leaf chlorophyll concentration from its color: A way in monitoring environment change to plantations. In AIP conference proceedings,. 1554, 210-213. https://doi.org/10.1063/1.4820322
  • Smrke, T., Stajner, N., Cesar, T., Veberic, R., Hudina, M., & Jakopic, J. (2023). Correlation between destructive and non-destructive measurements of highbush blueberry (Vaccinium corymbosum L.) fruit during maturation. Horticulturae, 9(4), 501. https://doi.org/10.3390/horticulturae9040501
  • Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511-515. https://doi.org/10.1016/j.foodchem.2008.09.080
  • Vieira, L. M., Marinho, L. M. G., Rocha, J. D. C. G., Barros, F. A. R., & Stringheta, P. C. (2018). Chromatic analysis for predicting anthocyanin content in fruits and vegetables. Food Science and Technology, 39, 415-422. https://doi.org/10.1590/fst.32517
  • Yan, Y., Pico, J., Gerbrandt, E. M., Dossett, M., & Castellarin, S. D. (2023). Comprehensive anthocyanin and flavonol profiling and fruit surface color of 20 blueberry genotypes during postharvest storage. Postharvest Biology and Technology, 199, 112274. https://doi.org/10.1016/j.postharvbio.2023.112274
  • Yang, C., Chen, W., Tang, D., Tan, X., Tan, L., & Tang, Q. (2023). Metabolomic and transcriptomic ınsights into anthocyanin biosynthesis in ‘Ziyan’ tea plants under varied photoperiod and temperature conditions. Agronomy, 14(1), 56. https://doi.org/10.3390/agronomy14010056
  • Zafra‐Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research, 51(6), 675-683. https://doi.org/10.1002/mnfr.200700002
Year 2024, Volume: 6 Issue: 1, 55 - 62, 30.06.2024
https://doi.org/10.53663/turjfas.1440608

Abstract

References

  • Aman, F., & Masood, S. (2020). How nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36 (COVID19-S4), S121. https://doi.org/10.12669/pjms.36.COVID19-S4.2776
  • Arozarena, I., Ortiz, J., Hermosín-Gutiérrez, I., Urretavizcaya, I., Salvatierra, S., Córdova, I., Marín-Arroyo M. R., Noriega M. J., & Navarro, M. (2012). Color, ellagitannins, anthocyanins, and antioxidant activity of Andean blackberry (Rubus glaucus Benth.) wines. Journal of Agricultural and Food Cemistry, 60(30), 7463-7473. https://doi.org/10.1021/jf300924z
  • Castaneda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
  • Castro-Acosta, M. L., Lenihan-Geels, G. N., Corpe, C. P., & Hall, W. L. (2016). Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proceedings of the Nutrition Society, 75(3), 342-355. https://doi.org/10.1017/S0029665116000240
  • Chu, L., Du, Q., Li, A., Liu, G., Wang, H., Cui, Q., Liu, Z., Liu, H., Lu Y., Deng Y., & Xu, G. (2024). Integrative transcriptomic and metabolomic analyses of the mechanism of anthocyanin accumulation and fruit coloring in three blueberry varieties of different colors. Horticulturae, 10(1), 105. https://doi.org/10.3390/horticulturae10010105
  • de Faria Coelho-Ravagnani, C., Corgosinho, F. C., Sanches, F. L. F. Z., Prado, C. M. M., Laviano, A., & Mota, J. F. (2021). Dietary recommendations during the COVID-19 pandemic. Nutrition Reviews, 79(4), 382-393. https://doi.org/10.1093/nutrit/nuaa067
  • Deroles, S. (2009). Anthocyanin biosynthesis in plant cell cultures: A potential source of natural colourants. Anthocyanins: biosynthesis, functions, and applications, 108-167. Springer Science & Business Media. (Eds.: Gould, K., Davies, K. M., & Winefield, C.). https://doi.org/10.1007/978-0-387-77335-3_5
  • do Lago, R. C., Silva, J. S., Pinto, K. M., Rodrigues, L. F., & Boas, E. V. D. B. V. (2020). Effect of maturation stage on the physical, chemical and biochemical composition of black mulberry. Research, Society and Development, 9(4), e49942824-e49942824. https://doi.org/10.33448/rsd-v9i4.2824
  • Ercisli, S., & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054
  • Feng, C., Su, S., Wang, L., Wu, J., Tang, Z., Xu, Y., Shu, Q., & Wang, L. (2016). Antioxidant capacities and anthocyanin characteristics of the black–red wild berries obtained in Northeast China. Food Chemistry, 204, 150-158. https://doi.org/10.1016/j.foodchem.2016.02.122
  • Giusti M. M, & Wrolstad R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Unit F1.2, p. 19–31. In: Wrolstad, R.E. and S.J. Schwartz (eds.). Handbook of food analytical chemistry. Wiley, New York. https://doi.org/10.1002/0471142913.faf0102s00
  • Guidi, L., Penella, P., & Landi, M. (2015). Anthocyanins in Mediterranean diet: common and innovative sources. In Handbook of Anthocyanins: Food Sources, Chemical Application and Health Benefit. (pp. 1-50). Nova Science Publishers, Inc.
  • Han, F. L., Zhang, W. N., Pan, Q. H., Zheng, C. R., Chen, H. Y., & Duan, C. Q. (2008). Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules, 13(11), 2859-2870. https://doi.org/10.3390/molecules13112859
  • Heldt, H. W., & Piechulla, B. (2015). Plant biochemistry. Academic Press. Translation from the 4th Edition. Translation Editors: Prof. Dr. Faik Ahmet Ayaz & Prof. Dr. Atalay Sökmen). 608 p.
  • Hernanz, D., Recamales, Á. F., Meléndez-Martínez, A. J., González-Miret, M. L., & Heredia, F. J. (2008). Multivariate statistical analysis of the color− anthocyanin relationships in different soilless-grown strawberry genotypes. Journal of Agricultural and Food Chemistry, 56(8), 2735-2741. https://doi.org/10.1021/jf073389j
  • Hosmer, D. W. & Lemeshow, S. (1999). Applied Survival Analysis, New York: John Wiley & Sons, Inc.
  • Hou, D. X., Fujii, M., Terahara, N., & Yoshimoto, M. (2004). Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology, 2004(5), 321. https://doi.org/10.1155/S1110724304403040
  • Itle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633-637. https://doi.org/10.21273/HORTSCI.44.3.633
  • Karaat, F.E., Gündüz, K., Saraçoğlu, O., & Yıldırım, H. (2019). Pomological and phytochemical evaluation of different cherry species: mahaleb (Prunus mahaleb L.), wild sweet cherry (Prunus avium L.) and wild sour cherry (Prunus cerasus L.), sweet and sour cherry cultivars. Acta Scientiarum Polonorum Hortorum Cultus, 18(4), 181–191. https://doi.org/10.24326/asphc.2019.4.17
  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779
  • Koca, I., & Karadeniz, B. (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae, 121(4), 447-450. https://doi.org/10.1016/j.scienta.2009.03.015
  • Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
  • Li, S., Yang, Y., Yu, J., Zhou, H., Hou, Z., & Wang, X. (2024). Molecular and metabolic insights into purplish leaf coloration through the investigation of two mulberry (Morus alba) genotypes. BMC Plant Biology, 24(1), 1-17. https://doi.org/10.1186/s12870-024-04737-x
  • Lin, C. Y., & Lay, H. L. (2013). Characteristics of fruit growth, component analysis and antioxidant activity of mulberry (Morus spp.). Scientia Horticulturae, 162, 285-292. https://doi.org/10.1016/j.scienta.2013.08.009
  • Manetas, Y. (2006). Why some leaves are anthocyanic and why most anthocyanic leaves are red?. Flora-Morphology, Distribution, Functional Ecology of Plants, 201(3), 163-177. https://doi.org/10.1016/j.flora.2005.06.010
  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
  • Naja, F., & Hamadeh, R. (2020). Nutrition amid the COVID-19 pandemic: a multi-level framework for action. European Journal of Clinical Nutrition, 74(8), 1117-1121. https://doi.org/10.1038/s41430-020-0634-3
  • Özgen, M., Serçe, S., & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Scientia Horticulturae, 119(3), 275-279. https://doi.org/10.1016/j.scienta.2008.08.007
  • Shibghatallah, M. A. H., Khotimah, S. N., Suhandono, S., Viridi, S., & Kesuma, T. (2013). Measuring leaf chlorophyll concentration from its color: A way in monitoring environment change to plantations. In AIP conference proceedings,. 1554, 210-213. https://doi.org/10.1063/1.4820322
  • Smrke, T., Stajner, N., Cesar, T., Veberic, R., Hudina, M., & Jakopic, J. (2023). Correlation between destructive and non-destructive measurements of highbush blueberry (Vaccinium corymbosum L.) fruit during maturation. Horticulturae, 9(4), 501. https://doi.org/10.3390/horticulturae9040501
  • Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511-515. https://doi.org/10.1016/j.foodchem.2008.09.080
  • Vieira, L. M., Marinho, L. M. G., Rocha, J. D. C. G., Barros, F. A. R., & Stringheta, P. C. (2018). Chromatic analysis for predicting anthocyanin content in fruits and vegetables. Food Science and Technology, 39, 415-422. https://doi.org/10.1590/fst.32517
  • Yan, Y., Pico, J., Gerbrandt, E. M., Dossett, M., & Castellarin, S. D. (2023). Comprehensive anthocyanin and flavonol profiling and fruit surface color of 20 blueberry genotypes during postharvest storage. Postharvest Biology and Technology, 199, 112274. https://doi.org/10.1016/j.postharvbio.2023.112274
  • Yang, C., Chen, W., Tang, D., Tan, X., Tan, L., & Tang, Q. (2023). Metabolomic and transcriptomic ınsights into anthocyanin biosynthesis in ‘Ziyan’ tea plants under varied photoperiod and temperature conditions. Agronomy, 14(1), 56. https://doi.org/10.3390/agronomy14010056
  • Zafra‐Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research, 51(6), 675-683. https://doi.org/10.1002/mnfr.200700002
There are 35 citations in total.

Details

Primary Language English
Subjects Fruit-Vegetables Technology
Journal Section Research Articles
Authors

Osman Nuri Öcalan 0000-0001-6242-4667

Onur Saraçoğlu 0000-0001-8434-1782

Publication Date June 30, 2024
Submission Date February 21, 2024
Acceptance Date March 12, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Öcalan, O. N., & Saraçoğlu, O. (2024). Relationships between anthocyanin content and some pomological and colour characteristics of black mulberry (Morus nigra) fruit. Turkish Journal of Food and Agriculture Sciences, 6(1), 55-62. https://doi.org/10.53663/turjfas.1440608

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci