Research Article
BibTex RIS Cite

Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli

Year 2018, Volume: 9 Issue: 1, 122 - 146, 19.03.2018
https://doi.org/10.16949/turkbilmat.359103

Abstract

Bu
çalışma ile altı öğretmenin öğrencilerin matematiksel düşünmelerine yönelik
farkındalık düzeylerinin incelenmesi amaçlanmıştır. Araştırmada dört öğretmen
ders imecesi mesleki gelişim sürecine katılırken, kalan iki öğretmen ise katılmamıştır.
Mesleki gelişim sürecine dâhil olan öğretmenlerle gerçekleştirilen ders imecesi
çalışmaları tamamlandıktan yaklaşık iki ay sonra,  altı öğretmene video kayıtları izletilerek
öğretim sürecine yönelik değerlendirmelerini rapor haline getirmeleri
istenmiştir. Nitel araştırma desenlerinden özel durum (örnek olay) çalışmasının
kullanıldığı çalışmanın veri toplama araçlarını öğretmenlere izletilen video
kayıtları, öğretmenlerin değerlendirme raporları ve öğretmenlerle
gerçekleştirilen yapılandırılmamış görüşmeler oluşturmaktadır. Öğretmenlerin
ifadelerine bağlı olarak öğretim sürecindeki farkındalık düzeylerini yorumlamak
amacıyla van Es (2011) tarafından geliştirilen teorik çerçeveden
faydalanılmıştır. Elde edilen bulgular doğrultusunda, ders imecesi sürecine dâhil
olan öğretmenlerin farkındalık düzeylerinin sürece dahil olmayan öğretmenlerin
farkındalık düzeylerinden daha fazla olduğu söylenebilir ve ders imecesi
mesleki gelişim sürecinin öğrenci düşünüşü üzerine öğretmenlerin farkındalık
düzeylerini arttırdığını göstermektedir.

References

  • Anthony, G., Hunter, J., & Hunter, R. (2015). Supporting prospective teachers to notice students' mathematical thinking through rehearsal activities. Mathematics Teacher Education and Development, 17(2), 7-24.
  • Baki, M. ve Arslan, S. (2015). Ders imecesinin (lesson study) sınıf öğretmeni adaylarının matematik dersini planlama bilgilerine etkisinin incelenmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 6(2), 209- 229.
  • Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3-32). San Francisco: Jossey Bass.
  • Blythe, T., Allen, D., & Powell, B. S. (1999). Looking together at student work: A companion guide to assessing student learning. New York: Teachers College Press.
  • Carpenter, T. P., Fennema, E., Peterson, P., & Carey, D. (1988). Teachers' pedagogical content knowledge of students' problem-solving in elementary arithmetic. Journal for Research in Mathematics Education, 19, 385-401.
  • Cochran-Smith, M., & Lytle, S. (1999). Relationship of knowledge and practice: Teacher learning in communities. Review of Research in Education, 24, 249-305.
  • Fennema, E., & Franke, M. L. (1992). Teachers ‘knowledge and its impact. In D. A. Grouws (Eds.), Handbook of research on mathematics teaching and learning (pp.147-164). New York: Macmillan.
  • Fernandez, C., & Yoshida, M. (2004). Lesson study: A case of a Japanese approach to improving instruction through school-based teacher development. Mahwah, NJ: Lawrence Erlbaum.
  • Goldsmith, L. T., & Seago, N. (2011). Using classroom artifacts to focus teachers' noticing. In M. G. Sherin, V. R. Jacobs & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes (pp. 169-187). New York: Routledge.
  • Güner, P. ve Akyüz, D. (2017a). Ders imecesi mesleki gelişim modeli: öğretmen adaylarının fark etme becerilerinin incelenmesi. İlköğretim Online, 16(2), 428-452.
  • Güner, P. ve Akyüz, D. (2017b). Öğretmen adaylarının ders imecesi (lesson study) kapsamında matematiksel fark etme nitelikleri. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 36(1), 47-81.
  • Inprasitha, M., Isoda, M., Wang-Iverson, P. & Yeap, B. H. (2015). Lesson study: Challenges in mathematics education. Singapore: World Sci.
  • Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169–202.
  • Jacobs, V., Lamb, L., Philipp, R., Schappelle, B., & Burke, A. (2007). Professional noticing by elementary school teachers of mathematics. Paper presented at the Annual Meeting of the American Educational Research Association, Chiago, IL.
  • Kazemi, E., & Franke, M. L. (2004). Teacher learning in mathematics: Using student work to promote collective inquiry. Journal of Mathematics Teacher Education, 7, 203-235.
  • Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional improvement. Philadelphia: Research for Better Schools.
  • Lewis, C., Friedkin, S., Baker, E., & Perry, R. (2011). Learning from the key tasks of lesson study. In O. Zaslavsky & P. Sullivan (Eds.), Constructing knowledge for teaching secondary mathematics (pp. 161-176). US: Springer.
  • Lewis, C., Perry, R., Friedkin, S., & Roth, J. (2012). Improving teaching does improve teachers: Evidence from lesson study. Journal of Teacher Education, 63(5), 368-375.
  • Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional improvement? The case of lesson study. Educational Researcher, 35(3), 3-14.
  • Marks, R. (1990). Pedagogical content knowledge. From a mathematical case to a modified conception. Journal of Teacher Education, 41(3), 3-11.
  • Miller, K., Zhou, X., Perry, M., Sims, L., & Fang, G. (2008). Do you see what I see? Effects of culture and expertise on attention to classroom video. Unpublished manuscript.
  • Murata, A., & Takahashi, A. (2002). Vehicle to connect theory, research, and practice: How teacher thinking changes in district-level lesson study in Japan. Paper presented at the Twenty-Fourth Annual Meeting of the North American chapter of the international group of the Psychology of Mathematics Education, Columbus, Ohio.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author
  • Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(4), 4-15.
  • Rodgers, C. R. (2002). Seeing student learning: Teacher change and the role of reflection. Harvard Educational Review, 72(2), 230-253.
  • Sherin, M. G. (2007). The development of teachers’ professional vision in video clubs. In R. Goldman, R. Pea, B. Barron & S. Derry (Eds.), Video research in the learning sciences (pp. 383-395). Hillsdale, NJ: Erlbaum.
  • Sherin, M. G., & van Es, E. A. (2009). Effects of video club participation on teachers’ professional vision. Journal of Teacher Education, 60(1), 20-37.
  • Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Situating the study of teacher noticing. In M. G. Sherin, V. R. Jacobs & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes (pp. 1-13). New York: Routledge.
  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
  • Stigler, J., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.
  • Takahashi, A., & Yoshida, M. (2004). Ideas for establishing lesson-study communities. Teaching Children Mathematics, 10(9), 436–443.
  • van Es, E. A. (2011). A framework for learning to notice student thinking. In M. Sherin, V. Jacobs & R. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’eyes (pp. 134-151). New York: Routledge.
  • van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24(2), 244-276.
  • van Es, E., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers' interpretation of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571-596.
  • van Es, E.A., & Sherin, M. G. (2010). The influence of video clubs on teachers’ thinking and practice. Journal of Mathematics Teacher Education, 13(2), 155-176.
  • Wang-Iverson, P., & Yoshida, M. (2005). Building our understanding of lesson study. Philadelphia: Research for Better Schools.
  • Yıldırım, A. ve Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (10. baskı). Ankara: Seçkin Yayıncılık.

Investigation of the Noticing Levels of Teachers about Students’ Mathematical Thinking: A Lesson Study Model

Year 2018, Volume: 9 Issue: 1, 122 - 146, 19.03.2018
https://doi.org/10.16949/turkbilmat.359103

Abstract

The purpose of the study is to investigate the
noticing levels of six teachers about students’ mathematical thinking. The four
of teachers participated in the lesson study professional development   process, and the rest did not participate in
the process of lesson study. Nearly two months after the lesson study
implementations were completed with the participant teachers, these six
teachers were asked to write a report to evaluate the teaching process after
they would watch the video recorded lessons. The data collection tools of this
case study were the video recordings which the participants watched,
participants’ evaluation reports and unstructured interviews. The theoretical
framework developed by van Es (2011) was used to interpret the effects of
lesson study process on the teachers’ noticing levels towards their students’
mathematical thinking. The findings showed that the noticing levels of the
teachers, who participated in the lesson study process, appeared to be higher than
the non-participant teachers. The findings also showed that lesson study
professional development process increased teachers’ noticing levels on
students’ mathematical thinking.

References

  • Anthony, G., Hunter, J., & Hunter, R. (2015). Supporting prospective teachers to notice students' mathematical thinking through rehearsal activities. Mathematics Teacher Education and Development, 17(2), 7-24.
  • Baki, M. ve Arslan, S. (2015). Ders imecesinin (lesson study) sınıf öğretmeni adaylarının matematik dersini planlama bilgilerine etkisinin incelenmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 6(2), 209- 229.
  • Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3-32). San Francisco: Jossey Bass.
  • Blythe, T., Allen, D., & Powell, B. S. (1999). Looking together at student work: A companion guide to assessing student learning. New York: Teachers College Press.
  • Carpenter, T. P., Fennema, E., Peterson, P., & Carey, D. (1988). Teachers' pedagogical content knowledge of students' problem-solving in elementary arithmetic. Journal for Research in Mathematics Education, 19, 385-401.
  • Cochran-Smith, M., & Lytle, S. (1999). Relationship of knowledge and practice: Teacher learning in communities. Review of Research in Education, 24, 249-305.
  • Fennema, E., & Franke, M. L. (1992). Teachers ‘knowledge and its impact. In D. A. Grouws (Eds.), Handbook of research on mathematics teaching and learning (pp.147-164). New York: Macmillan.
  • Fernandez, C., & Yoshida, M. (2004). Lesson study: A case of a Japanese approach to improving instruction through school-based teacher development. Mahwah, NJ: Lawrence Erlbaum.
  • Goldsmith, L. T., & Seago, N. (2011). Using classroom artifacts to focus teachers' noticing. In M. G. Sherin, V. R. Jacobs & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes (pp. 169-187). New York: Routledge.
  • Güner, P. ve Akyüz, D. (2017a). Ders imecesi mesleki gelişim modeli: öğretmen adaylarının fark etme becerilerinin incelenmesi. İlköğretim Online, 16(2), 428-452.
  • Güner, P. ve Akyüz, D. (2017b). Öğretmen adaylarının ders imecesi (lesson study) kapsamında matematiksel fark etme nitelikleri. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 36(1), 47-81.
  • Inprasitha, M., Isoda, M., Wang-Iverson, P. & Yeap, B. H. (2015). Lesson study: Challenges in mathematics education. Singapore: World Sci.
  • Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169–202.
  • Jacobs, V., Lamb, L., Philipp, R., Schappelle, B., & Burke, A. (2007). Professional noticing by elementary school teachers of mathematics. Paper presented at the Annual Meeting of the American Educational Research Association, Chiago, IL.
  • Kazemi, E., & Franke, M. L. (2004). Teacher learning in mathematics: Using student work to promote collective inquiry. Journal of Mathematics Teacher Education, 7, 203-235.
  • Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional improvement. Philadelphia: Research for Better Schools.
  • Lewis, C., Friedkin, S., Baker, E., & Perry, R. (2011). Learning from the key tasks of lesson study. In O. Zaslavsky & P. Sullivan (Eds.), Constructing knowledge for teaching secondary mathematics (pp. 161-176). US: Springer.
  • Lewis, C., Perry, R., Friedkin, S., & Roth, J. (2012). Improving teaching does improve teachers: Evidence from lesson study. Journal of Teacher Education, 63(5), 368-375.
  • Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional improvement? The case of lesson study. Educational Researcher, 35(3), 3-14.
  • Marks, R. (1990). Pedagogical content knowledge. From a mathematical case to a modified conception. Journal of Teacher Education, 41(3), 3-11.
  • Miller, K., Zhou, X., Perry, M., Sims, L., & Fang, G. (2008). Do you see what I see? Effects of culture and expertise on attention to classroom video. Unpublished manuscript.
  • Murata, A., & Takahashi, A. (2002). Vehicle to connect theory, research, and practice: How teacher thinking changes in district-level lesson study in Japan. Paper presented at the Twenty-Fourth Annual Meeting of the North American chapter of the international group of the Psychology of Mathematics Education, Columbus, Ohio.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: Author
  • Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(4), 4-15.
  • Rodgers, C. R. (2002). Seeing student learning: Teacher change and the role of reflection. Harvard Educational Review, 72(2), 230-253.
  • Sherin, M. G. (2007). The development of teachers’ professional vision in video clubs. In R. Goldman, R. Pea, B. Barron & S. Derry (Eds.), Video research in the learning sciences (pp. 383-395). Hillsdale, NJ: Erlbaum.
  • Sherin, M. G., & van Es, E. A. (2009). Effects of video club participation on teachers’ professional vision. Journal of Teacher Education, 60(1), 20-37.
  • Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Situating the study of teacher noticing. In M. G. Sherin, V. R. Jacobs & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes (pp. 1-13). New York: Routledge.
  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
  • Stigler, J., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.
  • Takahashi, A., & Yoshida, M. (2004). Ideas for establishing lesson-study communities. Teaching Children Mathematics, 10(9), 436–443.
  • van Es, E. A. (2011). A framework for learning to notice student thinking. In M. Sherin, V. Jacobs & R. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’eyes (pp. 134-151). New York: Routledge.
  • van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24(2), 244-276.
  • van Es, E., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers' interpretation of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571-596.
  • van Es, E.A., & Sherin, M. G. (2010). The influence of video clubs on teachers’ thinking and practice. Journal of Mathematics Teacher Education, 13(2), 155-176.
  • Wang-Iverson, P., & Yoshida, M. (2005). Building our understanding of lesson study. Philadelphia: Research for Better Schools.
  • Yıldırım, A. ve Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (10. baskı). Ankara: Seçkin Yayıncılık.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Gülşah Özdemir Baki

Ahmet Işık

Publication Date March 19, 2018
Published in Issue Year 2018 Volume: 9 Issue: 1

Cite

APA Özdemir Baki, G., & Işık, A. (2018). Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(1), 122-146. https://doi.org/10.16949/turkbilmat.359103
AMA Özdemir Baki G, Işık A. Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli. Turkish Journal of Computer and Mathematics Education (TURCOMAT). April 2018;9(1):122-146. doi:10.16949/turkbilmat.359103
Chicago Özdemir Baki, Gülşah, and Ahmet Işık. “Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9, no. 1 (April 2018): 122-46. https://doi.org/10.16949/turkbilmat.359103.
EndNote Özdemir Baki G, Işık A (April 1, 2018) Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9 1 122–146.
IEEE G. Özdemir Baki and A. Işık, “Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 9, no. 1, pp. 122–146, 2018, doi: 10.16949/turkbilmat.359103.
ISNAD Özdemir Baki, Gülşah - Işık, Ahmet. “Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9/1 (April 2018), 122-146. https://doi.org/10.16949/turkbilmat.359103.
JAMA Özdemir Baki G, Işık A. Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2018;9:122–146.
MLA Özdemir Baki, Gülşah and Ahmet Işık. “Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 9, no. 1, 2018, pp. 122-46, doi:10.16949/turkbilmat.359103.
Vancouver Özdemir Baki G, Işık A. Öğrencilerin Matematiksel Düşünmelerine Yönelik Öğretmenlerin Farkındalık Düzeylerinin İncelenmesi: Ders İmecesi Modeli. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2018;9(1):122-46.

Cited By

Examining Pre-Service Mathematics Teachers’ Noticing Skills
Turkish Journal of Computer and Mathematics Education (TURCOMAT)
Berna Tataroğlu Taşdan
https://doi.org/10.16949/turkbilmat.451136