Research Article
BibTex RIS Cite

The Effect of Using Dynamic Mathematics Software on Students’ Understanding of the Geometric Meaning of the Derivative Concept

Year 2019, Volume: 10 Issue: 1, 30 - 58, 10.04.2019
https://doi.org/10.16949/turkbilmat.419038

Abstract

This study aimed to investigate the impact of dynamic
mathematics software on students’ understanding of the geometric meaning of the
concept of derivative at a single point. The participants consisted of students
who were enrolled in two separate classes in a primary mathematics teacher
education programme at a state university. The study adopted a
quasi-experimental approach, with the two classes randomly assigned as a
control and an experimental group. The instructional approach in the control
group was traditional, whereas in the experimental group, computer-supported
worksheets were used. The data were gathered through two tests that were
developed by the researchers, as well as through clinical interviews conducted
with selected students. One of the tests aimed to determine the level of
knowledge of students about the concepts that are recognized in the literature
as being crucial to the learning of the derivative concept by research reports;
the other aimed to assess students’ learning regarding the content that was the
focus of the study. Their performance was assessed using a rubric that was
developed according to the level of understanding demonstrated in the students’
responses. A one-way analysis of covariance test was conducted on the students’
test scores to compare the performance of the two groups. The test concluded
that there was a significant difference between the groups in favor of the
experimental group. The clinical interviews showed that the students in the
experimental group achieved a higher level of understanding, as proposed by
APOS theory, in comparison to control group.

References

  • Aksoy, Y. (2007). Türev kavramının öğretiminde bilgisayar cebir sistemlerinin etkisi (Yayınlanmamış doktora tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Amit, M., & Vinner, S. (1990). Some misconceptions in calculus – Anecdotes or the tip of the iceberg? In G. Booker, P. Cobb, & T. N. de Mendicuti (Eds.), Proceedings of the 14th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol.1, pp. 3-10). Mexico: Program Committee
  • Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2014). APOS theory: A framework for research and curriculum development in mathematics education. New York: Springer.
  • Asiala, M., Dubinsky E., Cottrill J., & Schwingendorf, E. K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399-431.
  • Aspinwall, L., Shaw, K. L., & Presmeg, N. C. (1997). Uncontrollable mental imagery: Graphical connections between a function and its derivative. Educational Studies in Mathematics, 33, 301-317.
  • Berry, S. J., & Nyman, A. M. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497.
  • Bezuidenhout, J. (1998). First-year students’ understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29(3), 389-399.
  • Bingolbali, E., Monaghan, J., & Roper, T. (2007). Engineering students’ conceptions of the derivative and some implications for their mathematical education. International Journal of Mathematical Education in Science and Technology, 38(6), 763-777.
  • Biza, I., Diakoumopoulos, D., & Souyoul, A. (2007, February). Teaching analysis in dynamic geometry environments. Paper presented at the 5th Congress of the European Society for Research in Mathematics Education, Cyprus. Available at http://www.mathematik.uni-dortmund.de/~erme/CERME5b/ 10.05.2018.
  • Cohen, L., Manion, L., & Morrison, K. (2005). Research methods in education (5th ed.). London: Routledge Falmer.
  • Çekmez, E. (2013). Dinamik matematik yazılımı kullanımının öğrencilerin türev kavramının geometrik boyutuna ilişkin anlamalarına etkisi (Yayınlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
  • Çetin, N. (2009). The ability of students to comprehend the function-derivative relationship with regard to problems from their real life. Primus, 19(3), 232-244.
  • Dennis, D., & Confrey, J. (1996). The creation of continuous exponents: A study of the methods and epistemology of Alhazen and John Wallis. In J. Kaput, A. H. Schoenfeld & E. Dubinsky (Eds.) Research in Collegiate Mathematics Education II (pp. 33-60). Providence, RI: AMS & MAA
  • Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (pp. 25-41). The Netherlands: Kluwer Academic Pub.
  • Dreyfus, T., & Halevi, T. (1991). QuadFun-A case study of pupil computer interaction. Journal of Computers in Mathematics and Science Teaching, 10(2), 43-48.
  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). The Netherlands: Kluwer Academic Pub.
  • Dubinsky, E., & Macdonald, M. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Ed.), The teaching and learning of mathematics at the university level (pp. 275-282). Netherlands: Kluwerd Academic Pub.
  • Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In G. Harel, & E. Dubinsky (Eds.), The concept of function aspects of epistemology and pedagogy (pp. 85-106). Washington, D.C.: Mathematical Association of America.
  • Ellison, M. J. (1993). The effect of computer and calculator graphics on students’ ability to mentally construct calculus concepts (Unpublished doctoral dissertation). University of Minnesota, USA.
  • Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics, 3(2), 9-18.
  • Hartter, B. (1995). Concept image and concept definition for the topic of derivative (Unpublished doctoral dissertation). Illinois State University, USA. Hughes-Hallett, D., Gleason, A., Flath, D., Gordon, S., Lomen, D., Lovelock, D., … Thrash, K. (1994). Calculus. USA: Wiley & Sons, Inc.
  • Isaacson, J. (1999). The effects of static graphic, animated graphic, and interactive animated graphic presentations on acquisition of the tangent concept (Unpublished doctoral dissertation). University of Florida, USA.
  • Kaput, J. (1994). Democratizing access to calculus: New routes to old roots. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 77–156). Hillsdale, NJ: Lawrence Erlbaum.
  • Koirala, H. P. (1997). Teaching of calculus for students’ conceptual understanding. The Mathematics Educator, 2(1), 52–62.
  • LeVeque, R. J. (2003). The development of the function concept in students in freshman precalculus (Unpublished doctoral dissertation). Morgan State University, USA.
  • Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(2/3), 235-250.
  • Park, J. (2011). Calculus instructors’ and students’ discourses on the derivative (Unpublished doctoral dissertation). Michigan State University, USA.
  • Pinzka, M. K. (1999). The relationship between college calculus students’ understanding of function and their understanding of derivative (Unpublished doctoral dissertation). University of Minnesota, USA.
  • Pustejovsky, F. S. (1999). Beginning calculus students’ understanding of the derivative: Three case studies (Unpublished doctoral dissertation). Marquette University, USA.
  • Salas, S., Hille, E., & Etgen, G. (2007). Calculus: One and several variables (10th ed.). USA: Wiley & Sons, Inc.
  • Tall, D. O. (1991). The psychology of advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 3-21). Dordrecht: Kluwer Academic Pub.
  • Ubuz, B. (2007). Interpreting a graph and constructing its derivative graph: Stability and change in students’ conceptions. International Journal of Mathematical Education in Science and Technology, 38(5), 609–637.
  • Zimmermann, W. (1991). Visiual thinking in calculus. In W. Zimmermann, & S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 127-138). Washington DC: MAA.

Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi

Year 2019, Volume: 10 Issue: 1, 30 - 58, 10.04.2019
https://doi.org/10.16949/turkbilmat.419038

Abstract

Bu çalışma ile öğretim sürecinde dinamik matematik yazılımı
kullanımının öğrencilerin tek noktada türev kavramının geometrik boyutuna
ilişkin anlamalarına etkisini incelemek amaçlanmıştır. Araştırmanın
katılımcılarını bir devlet üniversitesinin ilköğretim matematik öğretmenliği
programının iki şubesinde bulunan öğrenciler oluşturmaktadır. Yarı-deneysel
yöntemin benimsendiği araştırmada kontrol grubunda öğretim sunuş yoluyla, deney
grubunda ise bilgisayar destekli çalışma yaprakları ile yürütülmüştür.
Araştırmanın verileri araştırmacılar tarafından geliştirilmiş iki testten ve
seçilmiş öğrenciler ile gerçekleştirilen mülakatlardan elde edilmiştir.
Testlerden biri uygulama öncesinde öğrencilerin türev kavramının öğrenilmesinde
etkili olduğu belirtilen ön bilgilere ne düzeyde sahip olduklarını belirlemek,
diğeri ise uygulama sonrasında ele alınan kavramın ne düzeyde öğrenildiğini
belirlemek için kullanılmıştır. Öğrencilerin sorulara verdikleri cevaplar
temelinde hazırlanan rubrikler ile öğrencilerin performansları puanlanmış ve
elde edilen puanlar üzerinde tek yönlü kovaryans analizi yürütülmüştür. Testin
sonuçları deney grubunun puan ortalamasının kontrol grubunun puan
ortalamasından anlamlı düzeyde yüksek olduğunu göstermiştir. Seçilen test
soruları üzerinde gerçekleştirilen mülakatlar deney grubu öğrencilerinin
kontrol grubu öğrencilerine nazaran APOS teorisi çerçevesinde daha ileri
düzeyde anlamalar oluşturduklarını göstermiştir.

References

  • Aksoy, Y. (2007). Türev kavramının öğretiminde bilgisayar cebir sistemlerinin etkisi (Yayınlanmamış doktora tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Amit, M., & Vinner, S. (1990). Some misconceptions in calculus – Anecdotes or the tip of the iceberg? In G. Booker, P. Cobb, & T. N. de Mendicuti (Eds.), Proceedings of the 14th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol.1, pp. 3-10). Mexico: Program Committee
  • Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2014). APOS theory: A framework for research and curriculum development in mathematics education. New York: Springer.
  • Asiala, M., Dubinsky E., Cottrill J., & Schwingendorf, E. K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399-431.
  • Aspinwall, L., Shaw, K. L., & Presmeg, N. C. (1997). Uncontrollable mental imagery: Graphical connections between a function and its derivative. Educational Studies in Mathematics, 33, 301-317.
  • Berry, S. J., & Nyman, A. M. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497.
  • Bezuidenhout, J. (1998). First-year students’ understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29(3), 389-399.
  • Bingolbali, E., Monaghan, J., & Roper, T. (2007). Engineering students’ conceptions of the derivative and some implications for their mathematical education. International Journal of Mathematical Education in Science and Technology, 38(6), 763-777.
  • Biza, I., Diakoumopoulos, D., & Souyoul, A. (2007, February). Teaching analysis in dynamic geometry environments. Paper presented at the 5th Congress of the European Society for Research in Mathematics Education, Cyprus. Available at http://www.mathematik.uni-dortmund.de/~erme/CERME5b/ 10.05.2018.
  • Cohen, L., Manion, L., & Morrison, K. (2005). Research methods in education (5th ed.). London: Routledge Falmer.
  • Çekmez, E. (2013). Dinamik matematik yazılımı kullanımının öğrencilerin türev kavramının geometrik boyutuna ilişkin anlamalarına etkisi (Yayınlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
  • Çetin, N. (2009). The ability of students to comprehend the function-derivative relationship with regard to problems from their real life. Primus, 19(3), 232-244.
  • Dennis, D., & Confrey, J. (1996). The creation of continuous exponents: A study of the methods and epistemology of Alhazen and John Wallis. In J. Kaput, A. H. Schoenfeld & E. Dubinsky (Eds.) Research in Collegiate Mathematics Education II (pp. 33-60). Providence, RI: AMS & MAA
  • Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (pp. 25-41). The Netherlands: Kluwer Academic Pub.
  • Dreyfus, T., & Halevi, T. (1991). QuadFun-A case study of pupil computer interaction. Journal of Computers in Mathematics and Science Teaching, 10(2), 43-48.
  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). The Netherlands: Kluwer Academic Pub.
  • Dubinsky, E., & Macdonald, M. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Ed.), The teaching and learning of mathematics at the university level (pp. 275-282). Netherlands: Kluwerd Academic Pub.
  • Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In G. Harel, & E. Dubinsky (Eds.), The concept of function aspects of epistemology and pedagogy (pp. 85-106). Washington, D.C.: Mathematical Association of America.
  • Ellison, M. J. (1993). The effect of computer and calculator graphics on students’ ability to mentally construct calculus concepts (Unpublished doctoral dissertation). University of Minnesota, USA.
  • Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics, 3(2), 9-18.
  • Hartter, B. (1995). Concept image and concept definition for the topic of derivative (Unpublished doctoral dissertation). Illinois State University, USA. Hughes-Hallett, D., Gleason, A., Flath, D., Gordon, S., Lomen, D., Lovelock, D., … Thrash, K. (1994). Calculus. USA: Wiley & Sons, Inc.
  • Isaacson, J. (1999). The effects of static graphic, animated graphic, and interactive animated graphic presentations on acquisition of the tangent concept (Unpublished doctoral dissertation). University of Florida, USA.
  • Kaput, J. (1994). Democratizing access to calculus: New routes to old roots. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 77–156). Hillsdale, NJ: Lawrence Erlbaum.
  • Koirala, H. P. (1997). Teaching of calculus for students’ conceptual understanding. The Mathematics Educator, 2(1), 52–62.
  • LeVeque, R. J. (2003). The development of the function concept in students in freshman precalculus (Unpublished doctoral dissertation). Morgan State University, USA.
  • Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(2/3), 235-250.
  • Park, J. (2011). Calculus instructors’ and students’ discourses on the derivative (Unpublished doctoral dissertation). Michigan State University, USA.
  • Pinzka, M. K. (1999). The relationship between college calculus students’ understanding of function and their understanding of derivative (Unpublished doctoral dissertation). University of Minnesota, USA.
  • Pustejovsky, F. S. (1999). Beginning calculus students’ understanding of the derivative: Three case studies (Unpublished doctoral dissertation). Marquette University, USA.
  • Salas, S., Hille, E., & Etgen, G. (2007). Calculus: One and several variables (10th ed.). USA: Wiley & Sons, Inc.
  • Tall, D. O. (1991). The psychology of advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 3-21). Dordrecht: Kluwer Academic Pub.
  • Ubuz, B. (2007). Interpreting a graph and constructing its derivative graph: Stability and change in students’ conceptions. International Journal of Mathematical Education in Science and Technology, 38(5), 609–637.
  • Zimmermann, W. (1991). Visiual thinking in calculus. In W. Zimmermann, & S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 127-138). Washington DC: MAA.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Erdem Çekmez 0000-0001-8684-2820

Adnan Baki

Publication Date April 10, 2019
Published in Issue Year 2019 Volume: 10 Issue: 1

Cite

APA Çekmez, E., & Baki, A. (2019). Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(1), 30-58. https://doi.org/10.16949/turkbilmat.419038
AMA Çekmez E, Baki A. Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). April 2019;10(1):30-58. doi:10.16949/turkbilmat.419038
Chicago Çekmez, Erdem, and Adnan Baki. “Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, no. 1 (April 2019): 30-58. https://doi.org/10.16949/turkbilmat.419038.
EndNote Çekmez E, Baki A (April 1, 2019) Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10 1 30–58.
IEEE E. Çekmez and A. Baki, “Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 10, no. 1, pp. 30–58, 2019, doi: 10.16949/turkbilmat.419038.
ISNAD Çekmez, Erdem - Baki, Adnan. “Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10/1 (April 2019), 30-58. https://doi.org/10.16949/turkbilmat.419038.
JAMA Çekmez E, Baki A. Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2019;10:30–58.
MLA Çekmez, Erdem and Adnan Baki. “Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 10, no. 1, 2019, pp. 30-58, doi:10.16949/turkbilmat.419038.
Vancouver Çekmez E, Baki A. Dinamik Matematik Yazılımı Kullanımının Öğrencilerin Türev Kavramının Geometrik Boyutuna Yönelik Anlamalarına Etkisi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2019;10(1):30-58.

Cited By