Research Article
BibTex RIS Cite
Year 2022, Volume: 3 Issue: 1, 39 - 48, 28.06.2022
https://doi.org/10.48053/turkgeo.1112911

Abstract

References

  • Abraham, E.M., & Alile, O.M. (2019). Modelling subsurface geologic structures at the Ikogosi geothermal field, southwestern Nigeria, using gravity, magnetics and seismic interferometry techniques. Journal of Geophysics and Engineering, 16(4), 729-741.
  • Abraham, E.M., Lawal, K.M., Ekwe, A.C., Alile, O., Murana, K.A., & Lawal, A.A. (2014). Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring-Ekiti State, southwestern Nigeria. Geothermal Energy, 2(1), 1-21.
  • Abubakar, A.J.A., Hashim, M., Pour, A.B., & Shehu, K. (2017). A review of geothermal mapping techniques using remotely sensed data. Science World Journal, 12(4), 72-82.
  • Adegbuyi, O., Ajayi, O.S., & Odeyemi, I.B. (1996). Prospects of hot-dry-rock (HDR) geothermal energy spectrophotoresource around the Ikogosi warm spring in Ekiti state, Nigeria. J. Renew. Energy, 4, 58-64.
  • Adepelumi, A.A., Ako, B.D., Ajayi, T.R., Olorunfemi, A. O., Awoyemi, M.O., & Falebita, D.E. (2008). Integrated geophysical mapping of the Ifewara transcurrent fault system, Nigeria. Journal of African Earth Sciences, 52(4-5), 161-166.
  • Beardsmore, G.R., & Cull, J.P. (2001). Crustal heat flow: a guide to measurement and modelling. Cambridge university press.
  • Birch, F. (1954). Heat from radioactivity. Nuclear geology, 148, 174.
  • Brigaud, F., Lucazeau, F., Ly, S., & Sauvage, J.F. (1985). Heat flow from the West African shield. Geophysical Research Letters, 12(9), 549-552.
  • Chopra, N., Ray, L., Dey, S., & Mitra, A. (2020). Thermal conductivity, density, petrological and geochemical characteristics of granitoids from Singhbhum Craton, eastern India. Geothermics, 87, 101855.
  • Espinosa-Cardeña, J.M., & Campos-Enriquez, J.O. (2008). Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, México. Journal of Volcanology and Geothermal Research, 176(4), 601-609.
  • Faweya, E.B. (2008). Radiogenic heat production in pebble from rocks in Ekiti State, Nigeria. Journal. Fiz. Malaysia, 29(1&2), 21-24.
  • Gao, P., Zhang, Y., Yu, Z., Fang, J., & Zhang, Q. (2015). Correlation study of shallow layer rock and soil thermal physical tests in laboratory and field. Geothermics, 53, 508-516.
  • Huenges, E., & Ledru, P. (2011). Geothermal energy systems: exploration, development, and utilization. John Wiley & Sons.
  • Liu, S., & Currie, C.A. (2016). Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666, 33-47.
  • McKenzie, D., & Priestley, K. (2016). Speculations on the formation of cratons and cratonic basins. Earth and Planetary Science Letters, 435, 94-104.
  • Ojo, J.S., Olorunfemi, M.O., & Falebita, D.E. (2011). An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods. Earth Sciences Research Journal, 15(1), 27-34.
  • Olorunfemi, M.O., Adepelumi, A.A., Falebita, D.E., & Alao, O.A. (2013). Crustal thermal regime of Ikogosi warm spring, Nigeria inferred from aeromagnetic data. Arabian Journal of Geosciences, 6(5), 1657-1667.
  • Ozdemir, A., & Palabiyik, Y. (2019). A new method for geological interpretation of 3D MT (Magnetotelluric) depth maps of high-temperature and deep geothermal fields: A case study from Western Turkey. In 2nd International Congress on Applied Sciences, 28-30 October 2019, Ankara, Turkey (Vol. 28, p. 30).
  • Ozdemir, A., Palabiyik, Y., & Arabaci, F. (2021). Geological structure and geothermal potential of the southeastern Alaşehir, Gediz Graben (western Anatolia, Turkey). International Journal of Earth Sciences Knowledge and Applications, 3(3), 190-207.
  • Ozdemir, A., Yasar, E., & Çevik, G. (2017). An importance of the geological investigations in Kavaklıdere geothermal field (Turkey). Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(1), 29-49.
  • Ozgener, O., & Kocer, G. (2004). Geothermal heating applications. Energy Sources, 26(4), 353-360.
  • Popov, Y., Beardsmore, G., Clauser, C., & Roy, S. (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49(10), 4179-4207.
  • Popov, Y. A., Pribnow, D.F., Sass, J.H., Williams, C.F., & Burkhardt, H. (1999). Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28(2), 253-276.
  • Salawu, N. B., Fatoba, J.O., Adebiyi, L.S., Eluwole, A.B., Olasunkanmi, N.K., Orosun, M.M., & Dada, S.S. (2021). Structural geometry of Ikogosi warm spring, southwestern Nigeria: Evidence from aeromagnetic and remote sensing interpretation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(2), 1-16.
  • Sedara, S.O. (2020). Modeling Heat flow from Radiogenic Heat properties of some common rock samples and its significance to geothermal modeling. Science & Technology, 6(22), 71-82.
  • Sedara S.O., & Alabi O.O. (2021) Geothermal prospect scaling of Ikogosi warm spring using combined geophysical methods. The Journal of Indian Geophysical Union, 25(5), 55-70.
  • Shanker, R., Guha, S.K., Seth, N.N., Mathuraman, K., Pitale, U.L., Jangi B.L., Prakash, G., Bandyopadhyay, A.K., & Sinha, R.K. (1991) Geothermal Atlas of India. Geological Survey of India special publication, 19, 144.
  • Shanker, R., Thussu, J.L., & Prasad, J.M. (1987). Geothermal studies at Tattapani hot spring area, Sarguja district, central India. Geothermics, 16(1), 61-76.
  • Turcotte, D.L., & Schubert, S. (2002) Geodynamics John Wiley and Sons, Cambridge university press.
  • Verheijen, P.J.T., & Ajakaiye, D.E. (1979). Heat-flow measurements in the Ririwai ring complex, Nigeria. Tectonophysics, 54(1-2), 27-32.
  • Zhu, W., Su, X., & Liu, Q. (2021). Analysis of the relationships between the thermophysical properties of rocks in the Dandong Area of China. European Journal of Remote Sensing, 54(2), 122-131.

Geophysical Analysis of Thermo-physical Properties of Rocks in Ikogosi field for Geothermal Energy Prospect.

Year 2022, Volume: 3 Issue: 1, 39 - 48, 28.06.2022
https://doi.org/10.48053/turkgeo.1112911

Abstract

The thermal and physical properties of rock units from Ikogosi Warm Spring (IKGWS) in the Southwestern part of Nigeria were examined in order to characterize and explore its geothermal prospect and to provide an insight into the different thermal properties of rocks of the study area. A total of 40 rock samples made up of granite, quartzite and gneiss series were collected from the outcrops of the study area and analyzed for Thermal conductivity (TC), Radiogenic heat production (RHP), Heat flow (HF), Porosity, Density and surface spring temperature measurements. The RHP values for all samples varied from 1.8 to 3.5μWm-3 with an average value of 2.5μWm-3 and standard deviation (SD) of 0.4 while the heat flow values varied from 14 to 27mWm-2 with an average of 19mWm-2 and SD of 3.4. The TC values varied from 2.95 to 4.11 with a mean of 3.49mWK-1 with a SD of 0.4 while the porosity values varied from 0.21-1.15 % with a mean of 0.62% with SD of 0.39. The density values varied from 2.68 to 2.85gcm-3 with a mean of 2.76gcm-3 and SD of 0.067. The surface temperature of the spring varied from 32 to 45°C with a mean of 38.9°C. From these results the average RHP and HF values estimated from all samples was below the 4μWm-3 and 100mWm-2 recommended value of heat to be considered for economic importance. Thus, the IKGWS geothermal field cannot be explored for power generation but for other geothermal activities and may be classified as a low enthalpy geothermal system (<150°C).

References

  • Abraham, E.M., & Alile, O.M. (2019). Modelling subsurface geologic structures at the Ikogosi geothermal field, southwestern Nigeria, using gravity, magnetics and seismic interferometry techniques. Journal of Geophysics and Engineering, 16(4), 729-741.
  • Abraham, E.M., Lawal, K.M., Ekwe, A.C., Alile, O., Murana, K.A., & Lawal, A.A. (2014). Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring-Ekiti State, southwestern Nigeria. Geothermal Energy, 2(1), 1-21.
  • Abubakar, A.J.A., Hashim, M., Pour, A.B., & Shehu, K. (2017). A review of geothermal mapping techniques using remotely sensed data. Science World Journal, 12(4), 72-82.
  • Adegbuyi, O., Ajayi, O.S., & Odeyemi, I.B. (1996). Prospects of hot-dry-rock (HDR) geothermal energy spectrophotoresource around the Ikogosi warm spring in Ekiti state, Nigeria. J. Renew. Energy, 4, 58-64.
  • Adepelumi, A.A., Ako, B.D., Ajayi, T.R., Olorunfemi, A. O., Awoyemi, M.O., & Falebita, D.E. (2008). Integrated geophysical mapping of the Ifewara transcurrent fault system, Nigeria. Journal of African Earth Sciences, 52(4-5), 161-166.
  • Beardsmore, G.R., & Cull, J.P. (2001). Crustal heat flow: a guide to measurement and modelling. Cambridge university press.
  • Birch, F. (1954). Heat from radioactivity. Nuclear geology, 148, 174.
  • Brigaud, F., Lucazeau, F., Ly, S., & Sauvage, J.F. (1985). Heat flow from the West African shield. Geophysical Research Letters, 12(9), 549-552.
  • Chopra, N., Ray, L., Dey, S., & Mitra, A. (2020). Thermal conductivity, density, petrological and geochemical characteristics of granitoids from Singhbhum Craton, eastern India. Geothermics, 87, 101855.
  • Espinosa-Cardeña, J.M., & Campos-Enriquez, J.O. (2008). Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, México. Journal of Volcanology and Geothermal Research, 176(4), 601-609.
  • Faweya, E.B. (2008). Radiogenic heat production in pebble from rocks in Ekiti State, Nigeria. Journal. Fiz. Malaysia, 29(1&2), 21-24.
  • Gao, P., Zhang, Y., Yu, Z., Fang, J., & Zhang, Q. (2015). Correlation study of shallow layer rock and soil thermal physical tests in laboratory and field. Geothermics, 53, 508-516.
  • Huenges, E., & Ledru, P. (2011). Geothermal energy systems: exploration, development, and utilization. John Wiley & Sons.
  • Liu, S., & Currie, C.A. (2016). Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666, 33-47.
  • McKenzie, D., & Priestley, K. (2016). Speculations on the formation of cratons and cratonic basins. Earth and Planetary Science Letters, 435, 94-104.
  • Ojo, J.S., Olorunfemi, M.O., & Falebita, D.E. (2011). An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods. Earth Sciences Research Journal, 15(1), 27-34.
  • Olorunfemi, M.O., Adepelumi, A.A., Falebita, D.E., & Alao, O.A. (2013). Crustal thermal regime of Ikogosi warm spring, Nigeria inferred from aeromagnetic data. Arabian Journal of Geosciences, 6(5), 1657-1667.
  • Ozdemir, A., & Palabiyik, Y. (2019). A new method for geological interpretation of 3D MT (Magnetotelluric) depth maps of high-temperature and deep geothermal fields: A case study from Western Turkey. In 2nd International Congress on Applied Sciences, 28-30 October 2019, Ankara, Turkey (Vol. 28, p. 30).
  • Ozdemir, A., Palabiyik, Y., & Arabaci, F. (2021). Geological structure and geothermal potential of the southeastern Alaşehir, Gediz Graben (western Anatolia, Turkey). International Journal of Earth Sciences Knowledge and Applications, 3(3), 190-207.
  • Ozdemir, A., Yasar, E., & Çevik, G. (2017). An importance of the geological investigations in Kavaklıdere geothermal field (Turkey). Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(1), 29-49.
  • Ozgener, O., & Kocer, G. (2004). Geothermal heating applications. Energy Sources, 26(4), 353-360.
  • Popov, Y., Beardsmore, G., Clauser, C., & Roy, S. (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49(10), 4179-4207.
  • Popov, Y. A., Pribnow, D.F., Sass, J.H., Williams, C.F., & Burkhardt, H. (1999). Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28(2), 253-276.
  • Salawu, N. B., Fatoba, J.O., Adebiyi, L.S., Eluwole, A.B., Olasunkanmi, N.K., Orosun, M.M., & Dada, S.S. (2021). Structural geometry of Ikogosi warm spring, southwestern Nigeria: Evidence from aeromagnetic and remote sensing interpretation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(2), 1-16.
  • Sedara, S.O. (2020). Modeling Heat flow from Radiogenic Heat properties of some common rock samples and its significance to geothermal modeling. Science & Technology, 6(22), 71-82.
  • Sedara S.O., & Alabi O.O. (2021) Geothermal prospect scaling of Ikogosi warm spring using combined geophysical methods. The Journal of Indian Geophysical Union, 25(5), 55-70.
  • Shanker, R., Guha, S.K., Seth, N.N., Mathuraman, K., Pitale, U.L., Jangi B.L., Prakash, G., Bandyopadhyay, A.K., & Sinha, R.K. (1991) Geothermal Atlas of India. Geological Survey of India special publication, 19, 144.
  • Shanker, R., Thussu, J.L., & Prasad, J.M. (1987). Geothermal studies at Tattapani hot spring area, Sarguja district, central India. Geothermics, 16(1), 61-76.
  • Turcotte, D.L., & Schubert, S. (2002) Geodynamics John Wiley and Sons, Cambridge university press.
  • Verheijen, P.J.T., & Ajakaiye, D.E. (1979). Heat-flow measurements in the Ririwai ring complex, Nigeria. Tectonophysics, 54(1-2), 27-32.
  • Zhu, W., Su, X., & Liu, Q. (2021). Analysis of the relationships between the thermophysical properties of rocks in the Dandong Area of China. European Journal of Remote Sensing, 54(2), 122-131.
There are 31 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Samuel Sedara 0000-0002-2116-1263

Publication Date June 28, 2022
Submission Date May 5, 2022
Acceptance Date June 21, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Sedara, S. (2022). Geophysical Analysis of Thermo-physical Properties of Rocks in Ikogosi field for Geothermal Energy Prospect. Turkish Journal of Geosciences, 3(1), 39-48. https://doi.org/10.48053/turkgeo.1112911