Research Article
BibTex RIS Cite

Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine

Year 2022, , 1 - 5, 29.06.2022
https://doi.org/10.51435/turkjac.1069294

Abstract

The cyclically refreshable liquid silver amalgam film silver based electrode (R-AgLAFE) to study of electrode processes under the “cap-pair” conditions was used. The catalytic effect of cysteine on the Bi(III) ions electroreduction processes has been demonstrated. The magnitude of the catalytic effect is related to the formation of the Bi(III) – Hg(SR)2 active complexes mediating electron transfer equilibrium

References

  • [1] C. N. Nunes, L. E. Pauluk, M. L. Felsner, V. Egéa dos Anjos, S. P. Quináia, Rapid screening method for detecting ethinyl estradiol in natural water employing voltammetry, J Anal Methods Chem, 2016, 1-7
  • [2] K. Sykut, G. Dalmata, B. Nowicka, J. Saba, Acceleration of electrode processes by organic compounds—“cap-pair” effect, J Electroanal Chem Interf Electrochem, 90, 1978, 299-302
  • [3] D. Dalmata, Kinetics and Mechanism of Zn(II) Ions Electroreduction Catalyzed by Organic Compounds, Electroanalysis, 17, 2005, 789-793
  • [4] P.A. Ajibade, F.P. Andrew, N.L. Botha, N. Solomane, Synthesis, Crystal Structures and Anticancer Studies of Morpholinyldithiocarbamato Cu(II) and Zn(II) Complexes, Molecules, 25, 2020, 3584 [5] E. V. Vinogradova, X. Zhang, D. Remillard, D.C. Lazar, R.M. Suciu, Y. Wang, B.F. Cravatt, An activity-guided map of electrophile-cysteine interactions in primary human T cells, Cell, 182, 2020, 1009-1026
  • [6] A. Nosal-Wiercińska, Catalytic activity of thiourea and its selected derivatives on electroreduction of In(III) in chlorates(VII) Cent Eur J Chem., 8, 2010, 1-11
  • [7] A. Nosal-Wiercińska, Intermolecular Interactions in Systems Containing Bi(III)–ClO4 –H2O–Selected Amino Acids in the Aspect of Catalysis of Bi(III) Electroreduction Electroanalysis, 26, 2014, 1013-1023
  • [8] S. Komorsky-Lovriˇc, M. Lovriˇc, M. Branica, Effect of IonicStrength on Bi(III) Reduction from Perchlorate Medium, J Electrochem Soc, 140, 1993, 1850
  • [9] O. Ikeda, K. Watanabe, Y. Taniguchi, H. Tamura, Adsorption Effect of Highly Polarizable Organic Compounds on Electrode Kinetics, Bull Chem Soc Jpn, 57, 1984, 3363-3367
  • [10] A. Nosal-Wiercińska, M. Martyna, V. Mirčeski, S. Skrzypek, Electroreduction of Bi (III) Ions at a Cyclically Renewable Liquid Silver Amalgam Film Electrode in the Presence of Methionine, Molecules, 25, 2021, 3972
  • [11] A. Nosal-Wiercińska, M. Martyna, M. Grochowski, B. Baś, First Electrochemical Studies on “CAP—PAIR” Effect for BI (III) Ion Electroreduction in the Presence of 2-Thiocytosine on Novel Cyclically Renewable Liquid Silver Amalgam Film Electrode (R-AgLAFE), J Electrochem Soc, 168, 2021, 066504
  • [12] A. J. L. Cooper, Biochemistry of sulfur containing aminoacids, Annu Rev Biochem, 52, 1983, 187-222
  • [13] R. Hell, Molecular physiology of plant sulfur metabolizm, Planta, 202, 1997, 138-148
  • [14] K. Saito, Regulation of sulfate transport and synthesis of sulfur-containingamino-acid (3) 200, Curr Opin Plant Biol, 3, 2002, 231-243
  • [15] M. Puka Sundvall, P. Eriksson, M. Nilsson, M. Saudberg, A. Lehmann, Neurotoxicity of cysteine: interaction with gluta mate, Brain Res, 705, 1995, 65-70
  • [16] R. Janaky, V. Varga, A. Hermann, P. Saransari, S. S. Oja, Mechanism of L-cysteine neurotoxicity, Neurochem Res, 25, 2000, 1397-1405
  • [17] J.W. Olney, C. Zorumski, M.T. Price, J. Labruyere, L-cysteine. a bicarbonate-sensitive endogenous excitotoxin, Science, 248, 1990, 596-599
  • [18] L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan, S. Yao, Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode, Electrochim Acta, 115, 2014, 471-477
  • [19] A. Nosal-Wiercińska, The Kinetics and Mechanism of the Electroreduction of Bi(III) Ions from Chlorates(VII) with Varied Water Activity, Electrochim Acta, 55, 2010, 5917-5921
  • [20] M. Stankovich, A. J. Bard, The electrochemistry of proteins and related substances I. Cystine and cysteine at mercury electrode, J Electroanal Chem, 75, 1977, 487-505
  • [21] M. Heyrovský, P. Mader, V. Veselá, and M. Fedurco, The reactions of cystine at mercury electrodes, J Electroanal Chem, 369, 1994, 53-70
  • [22] M. Heyrovský, P. Mader, S. Vavřička, V. Veselá, M. Fedurco, The anodic reactions at mercury electrodes due to cysteine, J Electroanal Chem, 430, 1977, 103-117
  • [23] A. Nosal-Wiercińska, The catalytic activity of cysteine and cystine on the electroreduction of Bi (III) ions, J Electroanal Chem, 662, 2011, 298-305
  • [24] R.A. Marcus, Dynamical effects in electron transfer reactions, J Chem Phys, 43, 1965, 4894-4914
  • [25] A. Nosal-Wiercińska, The influence of water activity on double layer parameters on the interface mercury/chlorates (VII) in the presence of cysteine, Croat Chem, 86, 2013, 159-164
  • [26] A. Nosal-Wiercińska, The role of active complexes in the multistep process of Bi (III) ion electroreduction in chlorate (VII) solutions with varied water activity in the presence of cystine, Electrochim Acta, 93, 2013, 397-403
Year 2022, , 1 - 5, 29.06.2022
https://doi.org/10.51435/turkjac.1069294

Abstract

References

  • [1] C. N. Nunes, L. E. Pauluk, M. L. Felsner, V. Egéa dos Anjos, S. P. Quináia, Rapid screening method for detecting ethinyl estradiol in natural water employing voltammetry, J Anal Methods Chem, 2016, 1-7
  • [2] K. Sykut, G. Dalmata, B. Nowicka, J. Saba, Acceleration of electrode processes by organic compounds—“cap-pair” effect, J Electroanal Chem Interf Electrochem, 90, 1978, 299-302
  • [3] D. Dalmata, Kinetics and Mechanism of Zn(II) Ions Electroreduction Catalyzed by Organic Compounds, Electroanalysis, 17, 2005, 789-793
  • [4] P.A. Ajibade, F.P. Andrew, N.L. Botha, N. Solomane, Synthesis, Crystal Structures and Anticancer Studies of Morpholinyldithiocarbamato Cu(II) and Zn(II) Complexes, Molecules, 25, 2020, 3584 [5] E. V. Vinogradova, X. Zhang, D. Remillard, D.C. Lazar, R.M. Suciu, Y. Wang, B.F. Cravatt, An activity-guided map of electrophile-cysteine interactions in primary human T cells, Cell, 182, 2020, 1009-1026
  • [6] A. Nosal-Wiercińska, Catalytic activity of thiourea and its selected derivatives on electroreduction of In(III) in chlorates(VII) Cent Eur J Chem., 8, 2010, 1-11
  • [7] A. Nosal-Wiercińska, Intermolecular Interactions in Systems Containing Bi(III)–ClO4 –H2O–Selected Amino Acids in the Aspect of Catalysis of Bi(III) Electroreduction Electroanalysis, 26, 2014, 1013-1023
  • [8] S. Komorsky-Lovriˇc, M. Lovriˇc, M. Branica, Effect of IonicStrength on Bi(III) Reduction from Perchlorate Medium, J Electrochem Soc, 140, 1993, 1850
  • [9] O. Ikeda, K. Watanabe, Y. Taniguchi, H. Tamura, Adsorption Effect of Highly Polarizable Organic Compounds on Electrode Kinetics, Bull Chem Soc Jpn, 57, 1984, 3363-3367
  • [10] A. Nosal-Wiercińska, M. Martyna, V. Mirčeski, S. Skrzypek, Electroreduction of Bi (III) Ions at a Cyclically Renewable Liquid Silver Amalgam Film Electrode in the Presence of Methionine, Molecules, 25, 2021, 3972
  • [11] A. Nosal-Wiercińska, M. Martyna, M. Grochowski, B. Baś, First Electrochemical Studies on “CAP—PAIR” Effect for BI (III) Ion Electroreduction in the Presence of 2-Thiocytosine on Novel Cyclically Renewable Liquid Silver Amalgam Film Electrode (R-AgLAFE), J Electrochem Soc, 168, 2021, 066504
  • [12] A. J. L. Cooper, Biochemistry of sulfur containing aminoacids, Annu Rev Biochem, 52, 1983, 187-222
  • [13] R. Hell, Molecular physiology of plant sulfur metabolizm, Planta, 202, 1997, 138-148
  • [14] K. Saito, Regulation of sulfate transport and synthesis of sulfur-containingamino-acid (3) 200, Curr Opin Plant Biol, 3, 2002, 231-243
  • [15] M. Puka Sundvall, P. Eriksson, M. Nilsson, M. Saudberg, A. Lehmann, Neurotoxicity of cysteine: interaction with gluta mate, Brain Res, 705, 1995, 65-70
  • [16] R. Janaky, V. Varga, A. Hermann, P. Saransari, S. S. Oja, Mechanism of L-cysteine neurotoxicity, Neurochem Res, 25, 2000, 1397-1405
  • [17] J.W. Olney, C. Zorumski, M.T. Price, J. Labruyere, L-cysteine. a bicarbonate-sensitive endogenous excitotoxin, Science, 248, 1990, 596-599
  • [18] L. Zhu, L. Xu, B. Huang, N. Jia, L. Tan, S. Yao, Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode, Electrochim Acta, 115, 2014, 471-477
  • [19] A. Nosal-Wiercińska, The Kinetics and Mechanism of the Electroreduction of Bi(III) Ions from Chlorates(VII) with Varied Water Activity, Electrochim Acta, 55, 2010, 5917-5921
  • [20] M. Stankovich, A. J. Bard, The electrochemistry of proteins and related substances I. Cystine and cysteine at mercury electrode, J Electroanal Chem, 75, 1977, 487-505
  • [21] M. Heyrovský, P. Mader, V. Veselá, and M. Fedurco, The reactions of cystine at mercury electrodes, J Electroanal Chem, 369, 1994, 53-70
  • [22] M. Heyrovský, P. Mader, S. Vavřička, V. Veselá, M. Fedurco, The anodic reactions at mercury electrodes due to cysteine, J Electroanal Chem, 430, 1977, 103-117
  • [23] A. Nosal-Wiercińska, The catalytic activity of cysteine and cystine on the electroreduction of Bi (III) ions, J Electroanal Chem, 662, 2011, 298-305
  • [24] R.A. Marcus, Dynamical effects in electron transfer reactions, J Chem Phys, 43, 1965, 4894-4914
  • [25] A. Nosal-Wiercińska, The influence of water activity on double layer parameters on the interface mercury/chlorates (VII) in the presence of cysteine, Croat Chem, 86, 2013, 159-164
  • [26] A. Nosal-Wiercińska, The role of active complexes in the multistep process of Bi (III) ion electroreduction in chlorate (VII) solutions with varied water activity in the presence of cystine, Electrochim Acta, 93, 2013, 397-403
There are 25 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Agnieszka Nosal-wiercińska 0000-0002-9851-9438

Marlena Martyna This is me 0000-0002-0070-1910

Małgorzata Wiśniewska 0000-0003-4003-9877

Selehattin Yılmaz 0000-0003-4607-3523

Nuray Denizhan This is me 0000-0003-4607-3523

Publication Date June 29, 2022
Submission Date February 7, 2022
Acceptance Date May 6, 2022
Published in Issue Year 2022

Cite

APA Nosal-wiercińska, A., Martyna, M., Wiśniewska, M., Yılmaz, S., et al. (2022). Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. Turkish Journal of Analytical Chemistry, 4(1), 1-5. https://doi.org/10.51435/turkjac.1069294
AMA Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N. Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. TurkJAC. June 2022;4(1):1-5. doi:10.51435/turkjac.1069294
Chicago Nosal-wiercińska, Agnieszka, Marlena Martyna, Małgorzata Wiśniewska, Selehattin Yılmaz, and Nuray Denizhan. “Application of a Cyclic Renewable Silver Amalgam Liquid Film Electrode (R-AgLAFE) to Study the Electroreduction Processes of Bi(III) Ions in the Presence of Cysteine”. Turkish Journal of Analytical Chemistry 4, no. 1 (June 2022): 1-5. https://doi.org/10.51435/turkjac.1069294.
EndNote Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N (June 1, 2022) Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. Turkish Journal of Analytical Chemistry 4 1 1–5.
IEEE A. Nosal-wiercińska, M. Martyna, M. Wiśniewska, S. Yılmaz, and N. Denizhan, “Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine”, TurkJAC, vol. 4, no. 1, pp. 1–5, 2022, doi: 10.51435/turkjac.1069294.
ISNAD Nosal-wiercińska, Agnieszka et al. “Application of a Cyclic Renewable Silver Amalgam Liquid Film Electrode (R-AgLAFE) to Study the Electroreduction Processes of Bi(III) Ions in the Presence of Cysteine”. Turkish Journal of Analytical Chemistry 4/1 (June 2022), 1-5. https://doi.org/10.51435/turkjac.1069294.
JAMA Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N. Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. TurkJAC. 2022;4:1–5.
MLA Nosal-wiercińska, Agnieszka et al. “Application of a Cyclic Renewable Silver Amalgam Liquid Film Electrode (R-AgLAFE) to Study the Electroreduction Processes of Bi(III) Ions in the Presence of Cysteine”. Turkish Journal of Analytical Chemistry, vol. 4, no. 1, 2022, pp. 1-5, doi:10.51435/turkjac.1069294.
Vancouver Nosal-wiercińska A, Martyna M, Wiśniewska M, Yılmaz S, Denizhan N. Application of a cyclic renewable silver amalgam liquid film electrode (R-AgLAFE) to study the electroreduction processes of Bi(III) ions in the presence of cysteine. TurkJAC. 2022;4(1):1-5.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/